Advertisement

Aptamer-Based Hydrogels and Their Applications

  • Chun-Hua Lu
  • Xiu-Juan Qi
  • Juan Li
  • Huang-Hao YangEmail author
Chapter

Abstract

Hydrogels are water-retainable materials that can absorb a large amount of water. Different stimuli can be used to stimulate the hydrogels with a variety of physical and chemical changes, thus leading to numerous applications in bioanalysis and biomedicine. Aptamers are special types of single-stranded DNA generated by a process called systematic evolution of ligands by exponential enrichment (SELEX). They are able to specifically recognize a wide range of targets which vary from ions, small molecules, to proteins, and even whole cells. Aptamer incorporation has greatly expanded the applications of hydrogels. Due to their unique properties, such as biocompatibility, selective binding, and molecular recognition, these aptamer-based hydrogels can be utilized for target-responsive hydrogel engineering. In this chapter, we discuss a variety of applications of aptamer-based hydrogels, especially in sensing, target capture and separation, control of target release and in vivo applications.

Keywords

Biosensors Cancer therapy Colorimetric Controlled release Drug delivery Gel–sol transition Nucleic acids Polyacrylamide chains Thrombin Visual detection 

References

  1. 1.
    Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJ (2008) Review on hydrogel-based Ph sensors and microsensors. Sensors 8:561–581Google Scholar
  2. 2.
    Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54:37–51Google Scholar
  3. 3.
    Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, Smith AM, Gough JE (2007) Bioresponsive hydrogels. Mater Today 10:40–48Google Scholar
  4. 4.
    Kulkarni RV, Biswanath SA (2007) Electrically responsive smart hydrogels in drug delivery: a review. J Appl Biomater Biomech 5:125–139Google Scholar
  5. 5.
    Murata K, Aoki M, Nishi T, Ikeda A, Shinkai S (1991) New cholesterol-based gelators with light-and metal-responsive functions. J Chem Soc Chem Commun 24:1715–1718Google Scholar
  6. 6.
    Maitra U, Mukhopadhyay S, Sarkar A, Rao P, Indi SS (2001) Hydrophobic pockets in a nonpolymeric aqueous gel: observation of such a gelation process by color change. Angew Chem Int Ed 40:2281–2283Google Scholar
  7. 7.
    Beck JB, Rowan SJ (2003) Multistimuli, multiresponsive metallo-supramolecular polymers. J Am Chem Soc 125:13922–13923Google Scholar
  8. 8.
    Zhao Y (2009) Photocontrollable block copolymer micelles: what can we control? J Mater Chem 19:4887–4895Google Scholar
  9. 9.
    Zhao Y (2012) Light-responsive block copolymer micelles. Macromolecules 45:3647–3657Google Scholar
  10. 10.
    Sambri L, Cucinotta F, Paoli GD, Stagni S, Cola LD (2010) Ultrasound-promoted hydrogelation of terpyridine derivatives. New J Chem 34:2093–2096Google Scholar
  11. 11.
    Satarkar NS, Hilt JZ (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Rel 130:246–251Google Scholar
  12. 12.
    Ozay O, Ekici S, Baran Y, Aktas N, Sahiner N (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43:4403–4411Google Scholar
  13. 13.
    Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46Google Scholar
  14. 14.
    Byrne ME, Park K, Peppas NA (2002) Molecular imprinting within hydrogels. Adv Drug Delivery Rev 54:149–161Google Scholar
  15. 15.
    Peppas NA, Langer R (2004) Origins and development of biomedical engineering within chemical engineering. AIChE J 50:536–546Google Scholar
  16. 16.
    Hilt JZ, Byrne ME (2004) Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules. Adv Drug Delivery Rev 56:1599–1620Google Scholar
  17. 17.
    Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832Google Scholar
  18. 18.
    Holtz JH, Holtz JSW, Munro CH, Asher SA (1998) Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal Chem 70:780–791Google Scholar
  19. 19.
    Zhang L, Seitz RW (2002) A pH sensor based on force generated by pH-dependent polymer swelling. Anal Bioanal Chem 373:555–559Google Scholar
  20. 20.
    Herber S, Olthuis W, Bergveld P (2003) A swelling hydrogel-based PCO2 sensor. Sens Actuators, B 91:378–382Google Scholar
  21. 21.
    Hilt JZ, Gupta AK, Bashir R, Peppas NA (2003) Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed Microdevices 5:177–184Google Scholar
  22. 22.
    Xu K, Lee F, Gao SJ, Chung JE, Yano H, Kurisawa M (2013) Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-α2a for liver cancer therapy. J Control Release 166:203–210Google Scholar
  23. 23.
    Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590Google Scholar
  24. 24.
    Kapur TA, Shoichet MSJ (2004) Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. Biomed Mater Res A 68A:235–243Google Scholar
  25. 25.
    Kim D, Beebe D (2007) Hydrogel-based reconfigurable components for microfluidic devices. Lab Chip 7:193–198Google Scholar
  26. 26.
    Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H (2010) Adhesion and mechanical properties of PNIPAM microgel films and their potential use as switchable cell culture substrates. Adv Funct Mater 20:3235–3243Google Scholar
  27. 27.
    McCain ML, Agarwal A, Nesmith HW, Nesmith AP, Parker KK (2014) Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35:5462–5471Google Scholar
  28. 28.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53Google Scholar
  29. 29.
    Lee KY, Mooney D (2001) Hydrogels for tissue engineering. J Chem Rev 101:1869–1879Google Scholar
  30. 30.
    Guo W, Qi XJ, Orbach R, Lu CH, Freage L, Mironi-Harpaz I, Willner I (2014) Reversible Ag+-crosslinked DNA hydrogels. Chem Commun 50:4065–4068Google Scholar
  31. 31.
    Nagahara S (1996) A reversibly antigen-responsive hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym Gels Networks 4:111–127Google Scholar
  32. 32.
    Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–799Google Scholar
  33. 33.
    Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420Google Scholar
  34. 34.
    Liu J (2011) Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter 7:6757–6767Google Scholar
  35. 35.
    Peng L, Wu C, You M, Han D, Chen Y, Fu T, Ye M, Tan W (2013) Engineering and applications of DNA-grafting polymer materials. Chem Sci 4:1928–1938Google Scholar
  36. 36.
    Khimji I, Kelly EY, Helwa Y, Hoang M, Liu J (2013) Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods 64:292–298Google Scholar
  37. 37.
    Xiong X, Wu C, Zhou C, Zhu G, Chen Z, Tan W (2013) Responsive DNA-based hydrogels and their applications. Macromol Rapid Commun 34:1271–1283Google Scholar
  38. 38.
    Yang D, Hartman MR, Derrien TL, Hamada S, An D, Yancey KG, Cheng R, Ma M, Luo D (2014) DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res 47:1902–1911Google Scholar
  39. 39.
    Watson JD, Crick FHC (1953) Molecular structure of nucleic acids—A structure for deoxyribose nucleic acid. Nature 171:737–738Google Scholar
  40. 40.
    Sinden RR, Pearson CE, Potaman VN, Ussery DW (1998) DNA: structure and function. Adv Gen Biol 5A:1–141Google Scholar
  41. 41.
    Hannon MJ (2007) Supramolecular DNA recognition. Chem Soc Rev 36:280–295Google Scholar
  42. 42.
    Stulz E, Clever G, Shionoya M, Mao C (2011) DNA in a modern world. Chem Soc Rev 40:5633–5635Google Scholar
  43. 43.
    Storhoff JJ, Mirkin CA (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862Google Scholar
  44. 44.
    Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366Google Scholar
  45. 45.
    Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A (2006) MercuryII-mediated formation of Thymine-HgII-Thymine base pairs in DNA duplexes. J Am Chem Soc 128:2172–2173Google Scholar
  46. 46.
    Li T, Dong S, Wang E (2009) Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal Chem 81:2144–2149Google Scholar
  47. 47.
    Zhu Z, Su Y, Li J, Li D, Zhang J, Song S, Zhao Y, Li G, Fan C (2009) Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem 81:7660–7666Google Scholar
  48. 48.
    Park KS, Jung C, Park HG (2010) “Illusionary” polymerase activity triggered by metal ions: use for molecular logic-gate operations. Angew Chem Int Ed 49:9757–9760Google Scholar
  49. 49.
    Collie GW, Parkinson GN (2011) The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 40:5867–5892Google Scholar
  50. 50.
    Wang F, Lu CH, Willner I (2014) From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 114:2881–2941Google Scholar
  51. 51.
    Xing Y, Cheng E, Yang Y, Chen P, Zhang T, Sun Y, Yang Z, Liu D (2011) Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater 23:1117–1121Google Scholar
  52. 52.
    Guo W, Orbach R, Mironi-Harpaz I, Seliktar D, Willner I (2013) Fluorescent DNA hydrogels composed of nucleic acid-stabilized silver nanoclusters. Small 9:3748–3752Google Scholar
  53. 53.
    Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D (2006) Enzyme-catalysed assembly of DNA hydrogel. Nat Mater 5:797–801Google Scholar
  54. 54.
    Cheng E, Xing Y, Chen P, Yang Y, Sun Y, Zhou D, Xu L, Fan Q, Liu D (2009) A pH-triggered, fast-responding DNA hydrogel. Angew Chem Int Ed 48:7660–7663Google Scholar
  55. 55.
    Lu CH, Qi XJ, Orbach R, Yang HH, Mironi-Harpaz I, Seliktar D, Willner I (2013) Switchable catalytic acrylamide hydrogels crosslinked by Hemin/G-quadruplexes. Nano Lett 13:1298–1302Google Scholar
  56. 56.
    Baeissa A, Dave N, Smith BD, Liu J (2010) DNA-functionalized monolithic hydrogels and gold nanoparticles for colorimetric DNA detection. ACS Appl Mater Interfaces 2:3594–3600Google Scholar
  57. 57.
    Dave N, Chan MY, Huang PJJ, Smith BD, Liu J (2010) Regenerable DNA-functionalized hydrogels for ultrasensitive instrument-free mercury(II) detection and removal in water. J Am Chem Soc 132:12668–12673Google Scholar
  58. 58.
    Joseph KA, Dave N, Liu J (2011) Electrostatically directed visual fluorescence response of DNA-functionalized monolithic hydrogels for highly sensitive Hg2+ detection. ACS Appl Mater Interfaces 3:733–739Google Scholar
  59. 59.
    Liedl T, Dietz H, Yurke B, Simmel F (2007) Controlled trapping and release of quantum dots in a DNA-switchable hydrogel. Small 3:1688–1693Google Scholar
  60. 60.
    Guo W, Lu CH, Qi XJ, Orbach R, Fadeev M, Yang HH, Willner I (2014) Switchable bifunctional stimuli-triggered poly-N-isopropylacrylamide/DNA hydrogels. Angew Chem Int Ed 53:10134–10138Google Scholar
  61. 61.
    Peng L, You M, Yuan Q, Wu C, Han D, Chen Y, Zhong Z, Xue J, Tan W (2012) Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. J Am Chem Soc 134:12302–12307Google Scholar
  62. 62.
    Zhu Z, Wu C, Liu H, Zou Y, Zhang X, Kang H, Yang CJ, Tan W (2010) An aptamer crosslinked hydrogel as a colorimetric platform for visual detection. Angew Chem Int Ed 49:1052–1056Google Scholar
  63. 63.
    Zhou L, Chen C, Ren J, Qu X (2014) Towards intelligent bioreactor systems: triggering the release and mixing of compounds based on DNA-functionalized hybrid hydrogel. Chem Commun 50:10255–10257Google Scholar
  64. 64.
    Lin H, Zou Y, Huang Y, Chen J, Zhang WY, Zhuang Z, Jenkins G, Yang CJ (2011) DNAzyme crosslinked hydrogel: a new platform for visual detection of metal ions. Chem Commun 47:9312–9314Google Scholar
  65. 65.
    Lee JB, Peng S, Yang D, Roh YH, Funabashi H, Park N, Rice EJ, Chen L, Long R, Wu M, Luo D (2012) A mechanical metamaterial made from a DNA hydrogel. Nat Nanotechnol 7:816–820Google Scholar
  66. 66.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822Google Scholar
  67. 67.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510Google Scholar
  68. 68.
    Sassanfar M, Szostak JW (1993) An RNA motif that binds ATP. Nature 364:550–553Google Scholar
  69. 69.
    Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M (1996) RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 24:1029–1036Google Scholar
  70. 70.
    Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429Google Scholar
  71. 71.
    Haller AA, Sarnow P (1997) In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules. Proc Natl Acad Sci USA 94:8521–8526Google Scholar
  72. 72.
    Mannironi C, DiNardo A, Fruscoloni P, Tocchini-Valentini GP (1997) In vitro selection of dopamine RNA ligands. Biochemistry 36:9726–9734Google Scholar
  73. 73.
    Rajendran M, Ellington AD (2002) Selecting nucleic acids for biosensor applications. Comb Chem High Throughput Screening 5:263–270Google Scholar
  74. 74.
    Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW, Mallikaratchy P, Sefah K, Yang CYJ, Tan WH (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103:11838–11843Google Scholar
  75. 75.
    Tang ZW, Shangguan D, Wang KM, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan WH (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79:4900–4907Google Scholar
  76. 76.
    Rajendran M, Ellington AD (2008) Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal Bioanal Chem 390:1067–1075Google Scholar
  77. 77.
    Cho EJ, Lee JW, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2:241–264Google Scholar
  78. 78.
    Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550Google Scholar
  79. 79.
    Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495Google Scholar
  80. 80.
    Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M (2004) Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens Bioelectron 20:1149–1156Google Scholar
  81. 81.
    Schlensog MD, Gronewold TMA, Tewes M, Famulok M, Quandt E (2004) A Love-wave biosensor using nucleic acids as ligands. Sens Actuators, B 101:308–315Google Scholar
  82. 82.
    Xu DK, Xu DW, Yu XB, Liu ZH, He W, Ma ZQ (2005) Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem 77:5107–5113Google Scholar
  83. 83.
    Ferapontova EE, Olsen EM, Gothelf KV (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J Am Chem Soc 130:4256–4258Google Scholar
  84. 84.
    Lu Y, Li X, Zhang L, Yu P, Su L, Mao L (2008) Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Anal Chem 80:1883–1890Google Scholar
  85. 85.
    Pan CF, Guo ML, Nie Z, Xiao XL, Yao SZ (2009) Aptamer-based electrochemical sensor for label-free recognition and detection of cancer Cells. Electroanalysis 21:1321–1326Google Scholar
  86. 86.
    Lee M, Walt DR (2000) A fiber-optic microarray biosensor using aptamers as receptors. Anal Biochem 282:142–146Google Scholar
  87. 87.
    McCauley TG, Hamaguchi N, Stanton M (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 319:244–250Google Scholar
  88. 88.
    Kirby R, Cho EJ, Gehrke B, Bayer T, Park YS, Neikirk DP, McDevitt JT, Ellington AD (2004) Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem 76:4066–4075Google Scholar
  89. 89.
    Kang HZ, Trondoli AC, Zhu GZ, Chen Y, Chang YJ, Liu HP, Huang YF, Zhang XL, Tan WH (2011) Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5:5094–5099Google Scholar
  90. 90.
    Wu C, Han D, Chen T, Peng L, Zhu G, You M, Qiu L, Sefah K, Zhang X, Tan W (2013) Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc 135:18644–18650Google Scholar
  91. 91.
    Yang H, Liu H, Kang H, Tan W (2008) Engineering target-responsive hydrogels based on aptamer-target interactions. J Am Chem Soc 130:6320–6321Google Scholar
  92. 92.
    Yin BC, Ye BC, Wang H, Zhu Z, Tan W (2012) Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem Commun 48:1248–1250Google Scholar
  93. 93.
    Zhang L, Lei J, Liu L, Li C, Ju H (2013) Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Anal Chem 85:11077–11082Google Scholar
  94. 94.
    Liu J, Liu H, Kang H, Donovan M, Zhu Z, Tan W (2012) Aptamer-incorporated hydrogels for visual detection, controlled drug release, and targeted cancer therapy. Anal Bioanal Chem 402:187–194Google Scholar
  95. 95.
    Yan L, Zhu Z, Zou Y, Huang Y, Liu D, Jia S, Xu D, Wu M, Zhou Y, Zhou S, Yang CJ (2013) Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J Am Chem Soc 135:3748–3751Google Scholar
  96. 96.
    Zhu Z, Guan Z, Jia S, Lei Z, Lin S, Zhang H, Ma Y, Tian Z, Yang CJ (2014) Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew Chem Int Ed 53:12503–12507Google Scholar
  97. 97.
    Soontornworajit B, Zhou J, Shaw MT, Fan TH, Wang Y (2010) Hydrogel functionalization with DNA aptamers for sustained PDGF-BB release. Chem Commun 46:1857–1859Google Scholar
  98. 98.
    Soontornworajit B, Zhou J, Zhang Z, Wang Y (2010) Aptamer-functionalized in situ injectable hydrogel for controlled protein release. Biomacromolecules 11:2724–2730Google Scholar
  99. 99.
    Soontornworajit B, Zhou J, Wang Y (2010) A hybrid particle-hydrogel composite for oligonucleotide-mediated pulsatile protein release. Soft Matter 6:4255–4261Google Scholar
  100. 100.
    Battig MR, Soontornworajit B, Wang Y (2012) Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J Am Chem Soc 134:12410–12413Google Scholar
  101. 101.
    Battig MR, Huang Y, Chen N, Wang Y (2014) Aptamer-functionalized superporous hydrogels for sequestration and release of growth factors regulated via molecular recognition. Biomaterials 35:8040–8048Google Scholar
  102. 102.
    Nielsen LJ, Olsen LF, Ozalp VC (2010) Aptamers embedded in polyacrylamide nanoparticles: a tool for in vivo metabolite sensing. ACS Nano 4:4361–4370Google Scholar
  103. 103.
    Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126:11768–11769Google Scholar
  104. 104.
    Huang CC, Huang YF, Cao Z, Tan W, Chang HT (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741Google Scholar
  105. 105.
    Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45:90–94Google Scholar
  106. 106.
    Liu J, Lu Y (2006) Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Adv Mater 18:1667–1671Google Scholar
  107. 107.
    Liu JW, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem 79:4120–4125Google Scholar
  108. 108.
    Yigit MV, Mazumdar D, Kim HK, Lee JH, Odintsov B, Lu Y (2007) Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. ChemBioChem 8:1675–1678Google Scholar
  109. 109.
    Lin DC, Yurke B, Langrana NA (2004) Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng 126:104–110Google Scholar
  110. 110.
    Murakami Y, Maeda M (2005) Hybrid hydrogels to which single-stranded (ss) DNA probe is incorporated can recognize specific ssDNA. Macromolecules 38:1535–1537Google Scholar
  111. 111.
    Wei B, Cheng I, Luo KQ, Mi Y (2008) Capture and release of protein by a reversible DNA-induced sol-gel transition system. Angew Chem Int Ed 47:331–333Google Scholar
  112. 112.
    Tang H, Duan X, Feng X, Liu L, Wang S, Li Y, Zhu D (2009) Fluorescent DNA-poly(phenylenevinylene) hybrid hydrogels for monitoring drug release. Chem Commun 6:641–643Google Scholar
  113. 113.
    Roh YH, Ruiz RCH, Peng S, Lee JB, Luo D (2011) Engineering DNA-based functional materials. Chem Soc Rev 40:5730–5744Google Scholar
  114. 114.
    Okay O (2011) DNA hydrogels: new functional soft materials. J Polym Sci B Polym Phys 49:551–556Google Scholar
  115. 115.
    Tokarev I, Minko S (2009) Stimuli-responsive hydrogel thin films. Soft Matter 5:511–524Google Scholar
  116. 116.
    Wang X, Wang X (2013) Aptamer-functionalized hydrogel diffraction gratings for the human thrombin detection. Chem Commun 49:5957–5959Google Scholar
  117. 117.
    Wang R, Li Y (2013) Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron 42:148–155Google Scholar
  118. 118.
    Ye BF, Zhao YJ, Cheng Y, Li TT, Xie ZY, Zhao XW, Gu ZZ (2012) Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 4:5998–6003Google Scholar
  119. 119.
    Lopez C (2003) Materials aspects of photonic crystals. Adv Mater 15:1679–1704Google Scholar
  120. 120.
    Kamenjicki M, Kesavamoorthy R, Asher SA (2004) Photonic crystal devices. Ionics 10:233–236Google Scholar
  121. 121.
    Li M, He F, Liao Q, Liu J, Xu L, Jiang L, Song Y, Wang S, Zhu D (2008) Ultrasensitive DNA detection using photonic crystals. Angew Chem Int Ed 47:7258–7262Google Scholar
  122. 122.
    Meade SO, Chen MY, Sailor MJ, Miskelly GM (2009) Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles. Anal Chem 81:2618–2625Google Scholar
  123. 123.
    Ge JP, He L, Hu YX, Yin YD (2011) Magnetically induced colloidal assembly into field-responsive photonic structures. Nanoscale 3:177–183Google Scholar
  124. 124.
    Bai W, Gariano NA, Spivak DA (2013) Macromolecular amplification of binding response in superaptamer hydrogels. J Am Chem Soc 135:6977–6984Google Scholar
  125. 125.
    Bai W, Spivak DA (2014) A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract. Angew Chem Int Ed 53:2095–2098Google Scholar
  126. 126.
    Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury(ii) in aqueous solutions. Angew Chem Int Ed 43:4300–4302Google Scholar
  127. 127.
    Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A (2007) 15N–15N J-coupling across HgII: direct observation of HgII-mediated T–T base pairs in a DNA duplex. J Am Chem Soc 129:244–245Google Scholar
  128. 128.
    Wang J, Liu B (2008) Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and SYBR Green I. Chem Commun 39:4759–4761Google Scholar
  129. 129.
    Jacobi ZE, Li L, Liu J (2012) Visual detection of lead(II) using a label-free DNA-based sensor and its immobilization within a monolithic hydrogel. Analyst 137:704–709Google Scholar
  130. 130.
    Helwa Y, Dave N, Froidevaux R, Samadi A, Liu J (2012) Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury(II) and adenosine. ACS Appl Mater Interfaces 4:2228–2233Google Scholar
  131. 131.
    Rupcich N, Nutiu R, Li Y, Brennan JD (2005) Entrapment of fluorescent signaling DNA aptamers in sol-gel-derived silica. Anal Chem 77:4300–4307Google Scholar
  132. 132.
    Hui CY, Li Y, Brennan JD (2014) Fluorescence analysis of the properties of structure-switching DNA aptamers entrapped in sol-gel-derived silica materials. Chem Mater 26:1896–1904Google Scholar
  133. 133.
    Siegel RA, Firestone BA (1988) pH-Dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules 21:3254–3259Google Scholar
  134. 134.
    Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240–242Google Scholar
  135. 135.
    Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244Google Scholar
  136. 136.
    Kokufata E, Zhang YQ, Tanaka T (1991) Saccharide-sensitive phase transition of a lectin-loaded gel. Nature 351:302–304Google Scholar
  137. 137.
    Mao C, Sun W, Shen Z, Seeman NC (1999) A nanomechanical device based on the B–Z transition of DNA. Nature 397:144–146Google Scholar
  138. 138.
    Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608Google Scholar
  139. 139.
    Yan H, Zhang X, Shen Z, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65Google Scholar
  140. 140.
    Feng L, Park SH, Reif JH, Yan H (2003) A two-state DNA lattice switched by DNA nanoactuator. Angew Chem Int Ed 42:4342–4346Google Scholar
  141. 141.
    He X, Wei B, Mi Y (2010) Aptamer based reversible DNA induced hydrogel system for molecular recognition and separation. Chem Commun 46:6308–6310Google Scholar
  142. 142.
    Zhang Z, Chen N, Li S, Battig MR, Wang Y (2012) Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J Am Chem Soc 134:15716–15719Google Scholar
  143. 143.
    Zhang ZL, Li S, Chen N, Yang C, Wang Y (2013) Programmable display of DNA-protein chimeras for controlling cell-hydrogel interactions via reversible intermolecular hybridization. Biomacromolecules 14:1174–1180Google Scholar
  144. 144.
    Li S, Chen N, Zhang Z, Wang Y (2013) Endonuclease-responsive aptamer-functionalized hydrogel coating for sequential catch and release of cancer cells. Biomaterials 34:460–469Google Scholar
  145. 145.
    Chen N, Zhang Z, Soontornworajit B, Zhou J, Wang Y (2012) Cell adhesion on an artificial extracellular matrix using aptamer-functionalized PEG hydrogels. Biomaterials 33:1353–1362Google Scholar
  146. 146.
    Langer R (1998) Drug delivery and targeting. Nature 392:5–10Google Scholar
  147. 147.
    Putney SD, Burke PA (1998) Improving protein therapeutics with sustained-release formulations. Nat Biotechnol 16:153–157Google Scholar
  148. 148.
    Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007Google Scholar
  149. 149.
    Jia XQ, Kiick KL (2009) Hybrid multicomponent hydrogels for tissue engineering. Macromol Biosci 9:140–156Google Scholar
  150. 150.
    Bussemer T, Otto I, Bodmeier R (2001) Pulsatile drug-delivery systems. Crit Rev Ther Drug Carrier Syst 18:433–458Google Scholar
  151. 151.
    Richards Grayson AC, Choi IS, Tyler BM, Wang PP, Brem H, Cima MJ, Langer R (2003) Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater 2:767–772Google Scholar
  152. 152.
    De Geest BG, De Koker S, Immesoete K, Demeester J, De Smedt SC, Hennink WE (2008) Self-exploding beads releasing microcarriers. Adv Mater 20:3687–3691Google Scholar
  153. 153.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Delivery Rev 54:3–12Google Scholar
  154. 154.
    Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli responsive polymer materials. Nat Mater 9:101–113Google Scholar
  155. 155.
    Bashir R, Hilt JZ, Elibol O, Gupta A, Peppas NA (2002) Micromechanical cantilever as an ultrasensitive pH microsensor. Appl Phys Lett 81:3091–3093Google Scholar
  156. 156.
    Yavuz MS, Cheng YY, Chen JY, Cobley CM, Zhang Q, Rycenga M, Xie JW, Kim C, Song KH, Schwartz AG, Wang LHV, Xia YN (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8:935–939Google Scholar
  157. 157.
    Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6:2364–2371Google Scholar
  158. 158.
    Kang HZ, Liu HP, Zhang XL, Yan JL, Zhu Z, Peng L, Yang HH, Kim YM, Tan WH (2011) Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir 27:399–408Google Scholar
  159. 159.
    Sasaki K, Shi ZY, Kopelman R, Masuhara H (1996) Three-dimensional pH microprobing with an optically-manipulated fluorescent particle. Chem Lett 25:141–142Google Scholar
  160. 160.
    Clark HA, Barker SLR, Brasuel M, Miller MT, Monson E, Parus S, Shi ZY, Song A, Thorsrud B, Kopelman R, Ade A, Meixner W, Athey B, Hoyer M, Hill D, Lightle R, Philbert MA (1998) Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs). Sens Actuators, B 51:12–16Google Scholar
  161. 161.
    Bermejo C, Ewald JC, Lanquar V, Jones AM, Frommer WB (2011) In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast. Biochem J 438:1–10Google Scholar
  162. 162.
    Buck SM, Xu H, Brasuel M, Philbert MA, Kopelman R (2004) Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells. Talanta 63:41–59Google Scholar
  163. 163.
    Clark HA, Kopelman R, Tjalkens R, Philbert MA (1999) Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal Chem 71:4837–4843Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chun-Hua Lu
    • 1
  • Xiu-Juan Qi
    • 1
  • Juan Li
    • 1
  • Huang-Hao Yang
    • 1
    Email author
  1. 1.The Key Lab of Analysis and Detection Technology for Food Safety of the MOECollege of Chemistry, Fuzhou UniversityFuzhouChina

Personalised recommendations