Abstract
Nucleic acid-based amphiphiles, which consist of nucleic acids covalently linked to lipophilic lipid molecules, have demonstrated unique physicochemical and biological properties and are emerging as new types of materials in biomedical applications. These types of hybrid materials combine the functions and properties from both hydrophilic nucleic acids and hydrophobic lipid tails and thus are developed to carry therapeutic drugs, to penetrate cell membranes, to decorate the cell surface, and to interact with endogenous proteins. These functional amphiphiles have demonstrated potentials in extending the usage of traditional nucleic acids. In this chapter, we highlight the recent advances with an emphasis on their synthesis, self-assemble properties, and biomedical applications. Specifically, we focus on illustrating the structure–function relationship which provides the foundation for rational design of nucleic acid amphiphiles in future applications in the biomedical field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788
Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 9:673–678
Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95
Wang K, Tang Z et al (2004) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed 48:856–870
Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550
Achenbach JC, Chiuman W, Cruz RP, Li Y (2004) DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol 5:321–336
Whitehead KA, Langer R (2009) Anderson DG knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138
Letsinger RL, Zhang G, Sun DK, Ikeuchi T, Sarin PT (1989) Cholesteryl conjugated oligonucleotides: synthesis, properties, and activity as inhibitors of replication of human immunodeficiency virus in cell culture. Proc Natl Acad Sci USA 86:6553–6556
Bijsterbosch MK, Rump ET, De Vrueh RL, Dorland RR, Veghel R, Tivell KL, Biessen EA, Berkel TJ, Manoharan M (2000) Modulation of plasma protein binding and in vivo live cell uptake of phosphorothioate oligodeoxynucleotides by cholesterol conjugation. Nucleic Acids Res 28:2717–2725
Wu Y, Sefan K, Liu H et al (2010) DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. PNAS 107:5–10
Kwak M, Herrmann A (2011) Nucleic acid amphiphiles: synthesis and self-assembled nanostructures. Chem Soc Rev 40:5745–5755
Ke G, Zhu Z, Wang W et al (2014) A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing. ACS Appl Mater Interfaces 6:15329–15334
Qiu L, Zhang T, Jiang J et al (2014) Cell membrane-anchored biosensors for real-time monitoring of cellular microenvironment 136:13090–13093
Xiong X, Liu H, Zhao Z et al (2013) DNA aptamer-mediated cell targeting. Angew Chem Int Ed Engl 52:1472–1476
Wolfrum C, Shi S, Jayaprakash KN et al (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25:1149–1157
Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178
Liu H, Moynihan KD, Zheng Y et al (2014) Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507:519–522
Bhatia D, Li Y, Ganesh KN (1999) Steroid—DNA conjugates: improved triplex formation with 5-amido-(7-deoxycholic acid)-dU incorporated oligonucleotides. Bioorg Med Chem Lett 9:1789–1794
Liu H, Zhu Z, Kang H et al (2010) DNA-based micelles: synthesis, micellar properties and size-dependent cell permeability. Chem-Eru J 16:3791–3797
Anaya M, Kwak M, Musser AJ et al (2010) Tunable hydrophobicity in DNA micelles: design, synthesis, and characterization of a new family of DNA amphiphiles. Chem-Eru J 16:12852–12859
Borisenko GG, Zaitseva MA, Chuvilin AN, Pozmogova GE (2009) DNA modification of live cell surface. Nucleic Acids Res 37:e28
Brush CK (1995) Lipo-phosphoramidites. US Patent 5,420,330
Chan YH, Lenz P, Boxer SG (2007) Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers. Proc Natl Adad Sci USA 104:18913–18918
Pokholenko O, Gissot A, Vialet B et al (2013) Lipid oligonucleotide conjugates as responsive nanomaterials for drug delivery. J Mater Chem B 1:5329–5331
Zimmermann J, Kwak M, Musser AJ, Herrmann A (2011) Amphiphilic DNA block copolymer: nucleic acid-polymer hybrid materials for diagnostics and biomedicine. Methods Mol Biol 751:239–266
http://www.linktech.co.uk/products/modifiers/hydrophobic_group_cholesterol_palmitate_modification
Schade M, Berti D, Huster D et al (2014) Lipophilic nucleic acids—a flexible construction kit for organization and functionalization of surfaces. Adv Colloid Interface Sci 208:235–251
Gosse C, Boutorine A, Aujard C, Chami M, Kononov A, Cogne-Laage E, Allemand JF, Li J, Jullien L (2004) Micelles of lipid-oligonucleotide conjugates: implications for membrane anchoring and base pairing. J Phys Chem B 108:6485–6497
Dentinger PM, Simmons BA, Cruz E, Sprague M (2006) DNA-mediated delivery of lipophilic molecules via hybridization to DNA-based vesicular aggregates. Langmuir 22:2935–2937
Teixeira F, Rigler JP, Vebert-Nardin C (2007) Nucleo-copolymers: oligonucleotide-based amphiphilic diblock copolymers. Chem Comm 1130–1132
Chen T, Wu C, Jimenez E et al (2013) DNA micelle flares for intracellular mRNA imaging and gene therapy. Angew Chem Int Ed 52:2012–2016
Rattanakiat S, Nishikawa M, Takakura Y (2012) Self-assembling CpG DNA nanoparticles for efficient antigen delivery and immunostimulation. Eur J Pharm Sci 47:352–358
Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134:1376–1391
Kabanov AV, Vinogradov SV, Ovchareko AV (1990) A new class of antivirals: antisense oligonucleotides combined with a hydrophobic substituent effectively inhibit influenza virus reproduction and synthesis of virus-specific proteins in MDCK cells. FEBS Lett 259:327–330
Skobridis K, Husken D, Nicklin P, Haner R (2005) Hybridisation and cellular uptake properties of lipophilic oligonucleotide-dendrimer conjugates. ARKIVOC 6:459–469
Li Z, Zhang Y, Fullhart P, Mirkin CA (2004) Reversible and chemically programmable micelle assembly with DNA block-copolymer amphiphiles. Nano Lett 4:1055–1058
Weber RJ, Liang SI, Selden NS, Desai TA, Gartner ZJ (2014) Efficient targeting of fatty-acid modified oligonucleotides to live cell membranes through step-wise assembly. Biomacromolecules published online 17 Oct 2014
Pfeiffer I, Hook F (2004) Bivalent cholesterol-based coupling of oligonucleotides to lipid membrane assemblies. J Am Chem Soc 126:10224–10225
Selden NS, Todhunter ME, Jee NY, Liu JS, Broaders KE, Gartner ZJ (2012) Chemically programmed cell adhesion with membrane-anchored oligonucleotides. J Am Chem Soc 134:765–768
Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protoc 5:1169–1185
Shangguan D, Li Y, Tang Z, Cao Z, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Adad Sci USA 103:11838–11843
Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen H, Li Y, Tan W (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79:4900–4907
Kammertoens T, Blankenstein T (2013) It’s the peptide-MHC affinity, stupid. Cancer Cell 23:429–431
Sefah K, Tang Z, Shangguan D, Chen H, Lepez-Colon D, Li Y, Parekh P, Martin J, Meng L, Philips JA, Kim YM, Tan W (2009) Molecular recognition of acute myloid leukemia using aptamers. Leukemia 23:235–244
Stephan MT, Irvine DJ (2011) Enhancing cell therapies from the outside in: cell surface engineering using synthetic nanomaterials. Nanotoday 6:309–325
Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998
Liu H, Kwong B, Irvine DJ (2011) Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy. Angew Chem Int Ed 50:7052–7055
Dennis MS, Zhang M, Meng G, Kadhodayan M et al (2002) Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem 227:35035–35043
Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725
Juliano RL, Ming X, Nakaguwa O (2012) The chemistry and biology of oligonucleotide conjugates. Acc Chem Res 45:1067–1076
Pal I, Ramsey JD (2011) The role of the lymphatic system in vaccine trafficking and immune response. Adv Drug Deliv Rev 63:909–922
Tsopelas C, Sutton R (2002) Why certain dyes are useful for localizing the sentinel lymph node. J Nucl Med 43:1377–1382
Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787–796
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Liu, H. (2015). Properties of Nucleic Acid Amphiphiles and Their Biomedical Applications. In: Tan, W., Fang, X. (eds) Aptamers Selected by Cell-SELEX for Theranostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46226-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-662-46226-3_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-46225-6
Online ISBN: 978-3-662-46226-3
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)