Advertisement

Aptamers-Guided DNA Nanomedicine for Cancer Theranostics

  • Guizhi Zhu
  • Liping Qiu
  • Hongmin Meng
  • Lei Mei
  • Weihong TanEmail author
Chapter

Abstract

The past two decades have witnessed the booming of DNA aptamers, and particularly the development of aptamers for the specific recognition of versatile disease-related molecular biomarkers and living cells, as well as the application of aptamers for molecular and cellular engineering, bioanalysis, and disease therapy. Owing to the predictable Watson-Crick base-pairing, DNA can be easily designed and engineered to construct sophisticated molecular devices and nanostructures, which, at the same time, can be integrated with many biofunctionalities, including DNA aptamers for specific target recognition, bioimaging agents for biosensing, as well as drug-loading moieties for targeted drug delivery. The ability of many aptamers to mediate internalization into mammalian cells additionally empowered aptamer-incorporated DNA devices to be utilized for intracellular delivery of biosensors and drug carriers, and eventually sensing intracellular biomolecular behaviors in real-time or modulating intracellular biological activities for therapeutic purposes. In this chapter, we discuss the development of aptamer-integrated DNA nanodevices for versatile applications in bioanalysis and disease therapy, with an emphasis on cancer theranostics.

Keywords

Aptamer DNA nanotechnology DNA engineering Biosensor Targeted drug delivery 

References

  1. 1.
    Jiang Q, Song C, Nangreave J, Liu X, Lin L, Qiu D, Wang Z-G, Zou G, Liang X, Yan H, Ding B (2012) DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 134:13396–13403Google Scholar
  2. 2.
    Lee H, Lytton-Jean AKR, Chen Y, Love KT, Park AI, Karagiannis ED, Sehgal A, Querbes W, Zurenko CS, Jayaraman M, Peng CG, Charisse K, Borodovsky A, Manoharan M, Donahoe JS, Truelove J, Nahrendorf M, Langer R, Anderson DG (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nano 7:389–393Google Scholar
  3. 3.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822Google Scholar
  4. 4.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510Google Scholar
  5. 5.
    Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–665Google Scholar
  6. 6.
    Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825Google Scholar
  7. 7.
    Mallikaratchy P, Stahelin RV, Cao Z, Cho W, Tan W (2006) Selection of DNA ligands for protein kinase C-delta. Chem Commun 30:3229–3231Google Scholar
  8. 8.
    Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci 100:15416–15421Google Scholar
  9. 9.
    Parekh P, Tang Z, Turner PC, Moyer RW, Tan W (2010) Aptamers recognizing glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal Chem 82:8642–8649Google Scholar
  10. 10.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566Google Scholar
  11. 11.
    Hu J, Wu J, Li C, Zhu L, Zhang WY, Kong G, Lu Z, Yang CJ (2011) A G-quadruplex aptamer inhibits the phosphatase activity of oncogenic protein Shp2 in vitro. ChemBioChem 12:424–430Google Scholar
  12. 12.
    Chen C-HB, Chernis GA, Hoang VQ, Landgraf R (2003) Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc Natl Acad Sci 100:9226–9231Google Scholar
  13. 13.
    Khati M, Schüman M, Ibrahim J, Sattentau Q, Gordon S, James W (2003) Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′F-RNA aptamers. J Virol 77:12692–12698Google Scholar
  14. 14.
    Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nature Rev Drug Discov 9:537–550Google Scholar
  15. 15.
    Guo K-T, SchÄfer R, Paul A, Gerber A, Ziemer G, Wendel HP (2006) A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells 24:2220–2231Google Scholar
  16. 16.
    Shangguan D, Li Y, Tang Z, Cao Z, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103:11838–11843Google Scholar
  17. 17.
    Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikaratchy P, Chen HW, Li Y, Tan W (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79:4900–4907Google Scholar
  18. 18.
    Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y, Cardona D, Witek RP, Liu C, Tan W (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80:721–728Google Scholar
  19. 19.
    Sefah K, Tang Z, Shangguan D, Chen H, Lopez-Colon D, Li Y, Parekh P, Martin J, Meng L, Phillips JA, Kim Y, Tan W (2009) Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 23:235–244Google Scholar
  20. 20.
    Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z, Meng L, Smith JE, Tan W (2008) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3:991–1001Google Scholar
  21. 21.
    Bayrac AT, Sefah K, Parekh P, Bayrac C, Gulbakan B, Oktem HA, Tan W (2011) In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem Neurosci 2:175–181Google Scholar
  22. 22.
    Simaeys DV, López-Colón D, Sefah K, Sutphen R, Jimenez E, Tan W (2010) Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX. Plos One 5Google Scholar
  23. 23.
    Zhao Z, Xu L, Shi X, Tan W, Fang X, Shangguan D (2009) Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst 134:1808–1814Google Scholar
  24. 24.
    Mi J, Liu Y, Rabbani ZN, Yang Z, Urban JH, Sullenger BA, Clary BM (2010) In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 6:22–24Google Scholar
  25. 25.
    Padmanabhan K, Padmanabhan KP, Ferrara JD, Sadler JE, Tulinsky A (1993) The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem 268:17651–17654Google Scholar
  26. 26.
    Long SB, Long MB, White RR, Sullenger BA (2008) Crystal structure of an RNA aptamer bound to thrombin. RNA-Publ. RNA Soc. 14:2504–2512Google Scholar
  27. 27.
    Lebars I, Legrand P, Aime A, Pinaud N, Fribourg S, Di Primo C (2008) Exploring TAR-RNA aptamer loop-loop interaction by X-ray crystallography, UV spectroscopy and surface plasmon resonance. Nucleic Acids Res 36:7146–7156Google Scholar
  28. 28.
    Huang DB, Vu D, Cassiday LA, Zimmerman JM, Maher LJ, Ghosh G (2003) Crystal structure of NF-kappa B (p50)(2) complexed to a high-affinity RNA aptamer. Proc Natl Acad Sci USA 100:9268–9273Google Scholar
  29. 29.
    Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 6:2230–2238Google Scholar
  30. 30.
    Sefah K, Meng L, Lopez-Colon D, Jimenez E, Liu C, Tan W (2010) DNA aptamers as molecular probes for colorectal cancer study. Plos One 5Google Scholar
  31. 31.
    Zhang K, Sefah K, Tang L, Zhao Z, Zhu G, Ye M, Sun W, Goodison S, Tan W (2012) A novel aptamer developed for breast cancer cell internalization. ChemMedChem 7:79–84Google Scholar
  32. 32.
    O’Donoghue M, Shi X, Fang X, Tan W (2012) Single-molecule atomic force microscopy on live cells compares aptamer and antibody rupture forces. Anal Bioanal Chem 402:3205–3209Google Scholar
  33. 33.
    Group TES (2002) Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 2:143–152Google Scholar
  34. 34.
    Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick G, Scardino E, Fay WP, Sullenger BA (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotech 22:1423–1428Google Scholar
  35. 35.
    Oney S, Lam RTS, Bompiani KM, Blake CM, Quick G, Heidel JD, Liu JY-C, Mack BC, Davis ME, Leong KW, Sullenger BA (2009) Development of universal antidotes to control aptamer activity. Nat Med 15:1224–1228Google Scholar
  36. 36.
    Gragoudas ES, Adamis AP, Cunningham ET, Feinsod M, Guyer DR (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351:2805–2816Google Scholar
  37. 37.
    Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164Google Scholar
  38. 38.
    Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139Google Scholar
  39. 39.
    Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033Google Scholar
  40. 40.
    Ferreira CSM, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biology 27:289–301Google Scholar
  41. 41.
    Wiegand T, Williams P, Dreskin S, Jouvin M, Kinet J, Tasset D (1996) High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J Immunol 157:221–230Google Scholar
  42. 42.
    Mi J, Zhang X, Giangrande PH, McNamara Ii JO, Nimjee SM, Sarraf-Yazdi S, Sullenger BA, Clary BM (2005) Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem Biophys Res Commun 338:956–963Google Scholar
  43. 43.
    Lebruska LL, Maher LJ (1999) Selection and characterization of an RNA decoy for transcription factor NF-κB†. Biochemistry 38:3168–3174Google Scholar
  44. 44.
    Martell RE, Nevins JR, Sullenger BA (2002) Optimizing aptamer activity for gene therapy applications using expression cassette SELEX. Mol Ther 6:30–34Google Scholar
  45. 45.
    Ishizaki J, Nevins JR, Sullenger BA (1996) Inhibition of cell proliferation by an RNA ligand that selectively blocks E2F function. Nat Med 2:1386–1389Google Scholar
  46. 46.
    Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol 2:793–805Google Scholar
  47. 47.
    Mahal LK, Bertozzi CR (1997) Engineered cell surfaces: fertile ground for molecular landscaping. Chem Biol 4:415–422Google Scholar
  48. 48.
    Gartner ZJ, Bertozzi CR (2009) Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. Proc Natl Acad Sci USA 106:4606–4610Google Scholar
  49. 49.
    Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nature Nanotech 6:763–772Google Scholar
  50. 50.
    Elbrink J, Bihler I (1975) Membrane transport: its relation to cellular metabolic rates. Science 188:1177–1184Google Scholar
  51. 51.
    Joyce JA, Pollard JW (2008) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252Google Scholar
  52. 52.
    Ali MM, Kang DK, Tsang K, Fu M, Karp JM, Zhao W (2012) Cell-surface sensors: lighting the cellular environment. Wiley Interdisc Rev Nanomed Nanobiotechnol 4:547–561Google Scholar
  53. 53.
    Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663Google Scholar
  54. 54.
    Zhao W, Schafer S, Choi J, Yamanaka YJ, Lombardi ML, Bose S, Carlson AL, Phillips JA, Teo W, Droujinine IA (2011) Cell-surface sensors for real-time probing of cellular environments. Nat Nanotechnol 6:524–531Google Scholar
  55. 55.
    Tokunaga T, Namiki S, Yamada K, Imaishi T, Nonaka H, Hirose K, Sando S (2012) Cell surface-anchored fluorescent aptamer sensor enables imaging of chemical transmitter dynamics. J Am Chem Soc 134:9561–9564Google Scholar
  56. 56.
    Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224Google Scholar
  57. 57.
    Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169–1185Google Scholar
  58. 58.
    Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452Google Scholar
  59. 59.
    Qiu L, Zhang T, Jiang J, Wu C, Zhu G, You M, Chen X, Zhang L, Cui C, Yu R (2014) Cell membrane-anchored biosensors for real-time monitoring of the cellular microenvironment. J Am Chem Soc 136(38):13090–13093Google Scholar
  60. 60.
    Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165Google Scholar
  61. 61.
    Liu H, Kwong B, Irvine DJ (2011) Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy. Angew Chem 123:7190–7193Google Scholar
  62. 62.
    Xiong X, Liu H, Zhao Z, Altman MB, Lopez-Colon D, Yang CJ, Chang LJ, Liu C, Tan W (2013) DNA aptamer-mediated cell targeting. Angew Chem Int Ed 52:1472–1476Google Scholar
  63. 63.
    Zhu G, Zhang S, Song E, Zheng J, Hu R, Fang X, Tan W (2013) Building fluorescent DNA nanodevices on target living cell surfaces. Angew Chem Int Ed 52:5490–5496Google Scholar
  64. 64.
    Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355:S7–S21Google Scholar
  65. 65.
    Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2:715–725Google Scholar
  66. 66.
    Tyagi S (2009) Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods 6:331–338Google Scholar
  67. 67.
    Bratu DP, Cha B-J, Mhlanga MM, Kramer FR, Tyagi S (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci 100:13308–13313Google Scholar
  68. 68.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292Google Scholar
  69. 69.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446Google Scholar
  70. 70.
    MacCumber MW, Ross CA, Glaser BM, Snyder SH (1989) Endothelin: visualization of mRNAs by in situ hybridization provides evidence for local action. Proc Natl Acad Sci 86:7285–7289Google Scholar
  71. 71.
    Wang S, Hazelrigg T (1994) Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369:400–403Google Scholar
  72. 72.
    Tan W, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8:547–553Google Scholar
  73. 73.
    Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr J-P (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 92:7297–7301Google Scholar
  74. 74.
    Santangelo PJ, Nix B, Tsourkas A, Bao G (2004) Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 32:e57–e57Google Scholar
  75. 75.
    Chen AK, Behlke MA, Tsourkas A (2008) Efficient cytosolic delivery of molecular beacon conjugates and flow cytometric analysis of target RNA. Nucleic Acids Res 36:e69–e69Google Scholar
  76. 76.
    Fang X, Liu X, Schuster S, Tan W (1999) Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc 121:2921–2922Google Scholar
  77. 77.
    Nitin N, Santangelo PJ, Kim G, Nie S, Bao G (2004) Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res 32:e58–e58Google Scholar
  78. 78.
    Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC (2011) Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci 108:1850–1855Google Scholar
  79. 79.
    Qiu L, Wu C, You M, Han D, Chen T, Zhu G, Jiang J, Yu R, Tan W (2013) A targeted, self-delivered, and photocontrolled molecular beacon for mRNA detection in living cells. J Am Chem Soc 135:12952–12955Google Scholar
  80. 80.
    Cao Z, Tong R, Mishra A, Xu W, Wong GCL, Cheng J, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498Google Scholar
  81. 81.
    Zhu G, Hu R, Zhao Z, Chen Z, Zhang X, Tan W (2013) Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. J Am Chem Soc 135:16438–16445Google Scholar
  82. 82.
    Nilsen TW, Grayzel J, Prensky W (1997) Dendritic nucleic acid structures. J Theor Biol 187:273–284Google Scholar
  83. 83.
    Li Y, Tseng YD, Kwon SY, d’Espaux L, Bunch JS, McEuen PL, Luo D (2004) Controlled assembly of dendrimer-like DNA. Nat Mater 3:38–42Google Scholar
  84. 84.
    Meng H-M, Zhang X, Lv Y, Zhao Z, Wang N-N, Fu T, Fan H, Liang H, Qiu L, Zhu G, Tan W (2014) DNA dendrimer: an efficient nanocarrier of functional nucleic acids for intracellular molecular sensing. ACS Nano 8:6171–6181Google Scholar
  85. 85.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229Google Scholar
  86. 86.
    Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, Rubino M, Veglia F, Fiorentini C, Cipolla CM (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55:213–220Google Scholar
  87. 87.
    Andrew MacKay J, Chen M, McDaniel JR, Liu W, Simnick AJ, Chilkoti A (2009) Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater 8:993–999Google Scholar
  88. 88.
    Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038Google Scholar
  89. 89.
    Seeman NC (2010) Nanomaterials Based on DNA. Annu Rev Biochem 79:65–87Google Scholar
  90. 90.
    Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotech 2:275–284Google Scholar
  91. 91.
    Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA 101:15275–15278Google Scholar
  92. 92.
    Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotech 18:33–37Google Scholar
  93. 93.
    Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834Google Scholar
  94. 94.
    Tan W, Wang H, Chen Y, Zhang X, Zhu H, Yang C, Yang R, Liu C (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29:634–640Google Scholar
  95. 95.
    Schüller VJ, Heidegger S, Sandholzer N, Nickels PC, Suhartha NA, Endres S, Bourquin C, Liedl T (2011) Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5:9696–9702Google Scholar
  96. 96.
    Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C (2011) Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5:8783–8789Google Scholar
  97. 97.
    Tan SJ, Kiatwuthinon P, Roh YH, Kahn JS, Luo D (2011) Engineering nanocarriers for siRNA delivery. Small 7:841–856Google Scholar
  98. 98.
    Chang M, Yang C-S, Huang D-M (2011) Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5:6156–6163Google Scholar
  99. 99.
    Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337Google Scholar
  100. 100.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nano 2:751–760Google Scholar
  101. 101.
    Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627Google Scholar
  102. 102.
    Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W (2013) Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 110:7998–8003Google Scholar
  103. 103.
    Huang Y-F, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, Tan W (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. ChemBioChem 10:862–868Google Scholar
  104. 104.
    Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed 45:8149–8152Google Scholar
  105. 105.
    Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, Chen Y, Wang K, Liu C, Tan W (2011) Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev 63:1361–1370Google Scholar
  106. 106.
    Meng L, Yang L, Zhao X, Zhang L, Zhu H, Liu C, Tan W (2012) Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One 7:e33434Google Scholar
  107. 107.
    Luo Y-L, Shiao Y-S, Huang Y-F (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5:7796–7804Google Scholar
  108. 108.
    Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova K, Deen WM, Scheinberg DA, McDevitt MR (2010) Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci 107:12369–12374Google Scholar
  109. 109.
    Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W (2013) Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. In: Proceedings of the national academy of sciencesGoogle Scholar
  110. 110.
    Zhu G, Meng L, Ye M, Yang L, Sefah K, O’Donoghue MB, Chen Y, Xiong X, Huang J, Song E, Tan W (2012) Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem Asian J 7:1630–1636Google Scholar
  111. 111.
    Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotech 2:249–255Google Scholar
  112. 112.
    Tamkovich SN, Cherepanova AV, Kolesnikova EV, Rykova EY, Pyshnyi DV, Vlassov VV, Laktionov PP (2006) Circulating DNA and DNase Activity in Human Blood. Ann N Y Acad Sci 1075:191–196Google Scholar
  113. 113.
    Hamblin GD, Carneiro KMM, Fakhoury JF, Bujold KE, Sleiman HF (2012) Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J Am Chem Soc 134:2888–2891Google Scholar
  114. 114.
    Keum J-W, Bermudez H (2009) Enhanced resistance of DNA nanostructures to enzymatic digestion. Chem Commun 7036–7038Google Scholar
  115. 115.
    Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT (2012) Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater 11:316–322Google Scholar
  116. 116.
    Lee JB, Peng S, Yang D, Roh YH, Funabashi H, Park N, Rice EJ, Chen L, Long R, Wu M, Luo D (2012) A mechanical metamaterial made from a DNA hydrogel. Nat Nano 7:816–820Google Scholar
  117. 117.
    Shalon D, Smith SJ, Brown PO (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 6:639–645Google Scholar
  118. 118.
    Credo GM, Su X, Wu K, Elibol OH, Liu DJ, Reddy B, Tsai T-W, Dorvel BR, Daniels JS, Bashir R, Varma M (2012) Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. Analyst 137:1351–1362Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Guizhi Zhu
    • 1
  • Liping Qiu
    • 2
    • 3
  • Hongmin Meng
    • 3
  • Lei Mei
    • 3
  • Weihong Tan
    • 2
    • 3
    Email author
  1. 1.Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and Bioengineering, National Institutes of HealthBethesdaUSA
  2. 2.Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular MedicineHunan UniversityChangshaChina
  3. 3.Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute and McKnight Brain InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations