Cell-Specific Aptamer Characterization

  • Tao Chen
  • Cuichen Wu
  • Weihong TanEmail author


The functional diversity of cell-specific aptamers has enabled their use for a broad spectrum of biomedical applications. A thorough characterization of aptamers would provide better and deeper understanding and facilitate the development of customized aptamer-based diagnostics and therapeutics with enhanced performance. In this chapter, key properties of cell-specific aptamers and their characterization are discussed.


Aptamer Characterization Binding affinity Binding site density Binding site distance Binding strength 


  1. 1.
    Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li X-F, Le XC (2014) Aptamer binding assays for proteins: the thrombin example—a review. Anal Chim Acta 837:1–15CrossRefGoogle Scholar
  2. 2.
    Deng Q, German I, Buchanan D, Kennedy RT (2001) Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Anal Chem 73(22):5415–5421CrossRefGoogle Scholar
  3. 3.
    Hage DS, Tweed SA (1997) Recent advances in chromatographic and electrophoretic methods for the study of drug-protein interactions. J Chromatogr B: Biomed Sci Appl 699(1–2):499–525CrossRefGoogle Scholar
  4. 4.
    Hagestam IH, Pinkerton TC (1985) Internal surface reversed-phase silica supports for liquid chromatography. Anal Chem 57(8):1757–1763CrossRefGoogle Scholar
  5. 5.
    Drabovich AP, Berezovski M, Okhonin V, Krylov SN (2006) Selection of smart aptamers by methods of kinetic capillary electrophoresis. Anal Chem 78(9):3171–3178CrossRefGoogle Scholar
  6. 6.
    Cruz-Aguado JA, Penner G (2008) Determination of ochratoxin A with a DNA aptamer. J Agric Food Chem 56(22):10456–10461CrossRefGoogle Scholar
  7. 7.
    Hall B, Arshad S, Seo K, Bowman C, Corley M, Jhaveri SD, Ellington AD (2001) In vitro selection of RNA aptamers to a protein target by filter immobilization. In: Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  8. 8.
    Ryan PC, Lu M, Draper DE (1991) Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol 221(4):1257–1268CrossRefGoogle Scholar
  9. 9.
    Carey J, Cameron V, De Haseth PL, Uhlenbeck OC (1983) Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry 22(11):2601–2610CrossRefGoogle Scholar
  10. 10.
    Hall K, Kranz J (1999) Nitrocellulose filter binding for determination of dissociation constants. In: Haynes S (ed) RNA-protein interaction protocols, vol 118. Humana Press, New York, pp 105–114Google Scholar
  11. 11.
    Oehler S, Alex R, Barker A (1999) Is nitrocellulose filter binding really a universal assay for protein–DNA interactions? Anal Biochem 268(2):330–336CrossRefGoogle Scholar
  12. 12.
    Jaouen S, de Koning L, Gaillard C, Muselíková-Polanská E, Štros M, Strauss F (2005) Determinants of specific binding of HMGB1 protein to hemicatenated DNA loops. J Mol Biol 353(4):822–837CrossRefGoogle Scholar
  13. 13.
    Tahiri-Alaoui A, Frigotto L, Manville N, Ibrahim J, Romby P, James W (2002) High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res 30(10):e45CrossRefGoogle Scholar
  14. 14.
    Flinders J, DeFina SC, Brackett DM, Baugh C, Wilson C, Dieckmann T (2004) Recognition of planar and nonplanar ligands in the malachite green–RNA aptamer complex. ChemBioChem 5(1):62–72CrossRefGoogle Scholar
  15. 15.
    Nag A, Bhattacharyya K (1989) Fluorescence enhancement of p-toluidino naphthalenesulphonate in a micellar environment. J Photochem Photobiol A: Chem 47(1):97–102CrossRefGoogle Scholar
  16. 16.
    Nakayama K, Endo M, Fujitsuka M, Majima T (2006) Detection of the local structural changes in the dimer interface of BamHI initiated by DNA binding and dissociation using a solvatochromic fluorophore. J Phys Chem B 110(42):21311–21318CrossRefGoogle Scholar
  17. 17.
    Tan W, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8(5):547–553CrossRefGoogle Scholar
  18. 18.
    Cruz-Aguado JA, Penner G (2008) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80(22):8853–8855CrossRefGoogle Scholar
  19. 19.
    Guédin A, Lacroix L, Mergny J-L (2010) Thermal melting studies of ligand DNA interactions. In: Fox KR (ed) Drug-DNA interaction protocols, vol 613. Humana Press, New York, pp 25–35Google Scholar
  20. 20.
    Lin P-H, Chen R-H, Lee C-H, Chang Y, Chen C-S, Chen W-Y (2011) Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry. Colloids Surf B: Biointerfaces 88(2):552–558CrossRefGoogle Scholar
  21. 21.
    Jing M, Bowser MT (2011) Methods for measuring aptamer-protein equilibria: a review. Anal Chim Acta 686(1–2):9–18CrossRefGoogle Scholar
  22. 22.
    Wang J, Lv R, Xu J, Xu D, Chen H (2008) Characterizing the interaction between aptamers and human IgE by use of surface plasmon resonance. Anal Bioanal Chem 390(4):1059–1065CrossRefGoogle Scholar
  23. 23.
    Fägerstam LG, Frostell-Karlsson Å, Karlsson R, Persson B, Rönnberg I (1992) Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J Chromatogr A 597(1–2):397–410CrossRefGoogle Scholar
  24. 24.
    Win MN, Klein JS, Smolke CD (2006) Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay. Nucleic Acids Res 34(19):5670–5682CrossRefGoogle Scholar
  25. 25.
    Sultan Y, Walsh R, Monreal C, DeRosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromolecules 10(5):1149–1154CrossRefGoogle Scholar
  26. 26.
    Potty ASR, Kourentzi K, Fang H, Jackson GW, Zhang X, Legge GB, Willson RC (2009) Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor. Biopolymers 91(2):145–156CrossRefGoogle Scholar
  27. 27.
    Yoshida W, Sode K, Ikebukuro K (2006) Homogeneous DNA sensing using enzyme-inhibiting DNA aptamers. Biochem Biophys Res Commun 348(1):245–252CrossRefGoogle Scholar
  28. 28.
    Regulski E, Breaker R (2008) In-line probing analysis of riboswitches. In: Wilusz J (ed) post-transcriptional gene regulation, vol 419. Humana Press, New York, pp 53–67Google Scholar
  29. 29.
    Oh SS, Plakos K, Lou X, Xiao Y, Soh HT (2010) In vitro selection of structure-switching, self-reporting aptamers. Proc Nat Acad Sci 107(32):14053–14058CrossRefGoogle Scholar
  30. 30.
    Davis KA, Abrams B, Lin Y, Jayasena SD (1996) Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids Res 24(4):702–706CrossRefGoogle Scholar
  31. 31.
    Davis KA, Abrams B, Lin Y, Jayasena SD (1998) Staining of cell surface human CD4 with 2′-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res 26(17):3915–3924CrossRefGoogle Scholar
  32. 32.
    Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci 103(32):11838–11843CrossRefGoogle Scholar
  33. 33.
    Chen Y, Munteanu AC, Huang Y-F, Phillips J, Zhu Z, Mavros M, Tan W (2009) Mapping receptor density on live cells by using fluorescence correlation spectroscopy. Chem Eur J 15(21):5327–5336CrossRefGoogle Scholar
  34. 34.
    Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56(1):555–583CrossRefGoogle Scholar
  35. 35.
    Takayama S, Shimosato H, Shiba H, Funato M, Che F-S, Watanabe M, Iwano M, Isogai A (2001) Direct ligand-receptor complex interaction controls brassica self-incompatibility. Nature 413(6855):534–538CrossRefGoogle Scholar
  36. 36.
    Osborne SE, Ellington AD (1997) Nucleic acid selection and the challenge of combinatorial chemistry. Chem Rev 97(2):349–370CrossRefGoogle Scholar
  37. 37.
    Colabufo NA, Berardi F, Calò R, Leopoldo M, Perrone R, Tortorella V (2001) Determination of dopamine D4 receptor density in rat striatum using PB12 as a probe. Eur J Pharmacol 427(1):1–5CrossRefGoogle Scholar
  38. 38.
    Huang Y-F, Chang H-T, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80(3):567–572CrossRefGoogle Scholar
  39. 39.
    Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34(3):383–408CrossRefGoogle Scholar
  40. 40.
    Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Meth 4(11):963–973CrossRefGoogle Scholar
  41. 41.
    Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R (2006) The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 12(35):10Google Scholar
  42. 42.
    Zheng J (2006) Spectroscopy-based quantitative fluorescence resonance energy transfer analysis. In: Stockand JD, Shapiro MS (eds) Ion channels: methods and protocols, vol 337. Humana Press, New YorkGoogle Scholar
  43. 43.
    Blanchard SC, Kim HD, Gonzalez RL, Puglisi JD, Chu S (2004) tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci USA 101(35):12893–12898CrossRefGoogle Scholar
  44. 44.
    Zhuang X, Bartley LE, Babcock HP, Russell R, Ha T, Herschlag D, Chu S (2000) A single-molecule study of rna catalysis and folding. Science 288(5473):2048–2051CrossRefGoogle Scholar
  45. 45.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58(1):267–297CrossRefGoogle Scholar
  46. 46.
    Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706(1):8–24CrossRefGoogle Scholar
  47. 47.
    Liu GL, Yin Y, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, Bear DG, Gray JW, Alivisatos AP, Lee LP, Chen FF (2006) A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nat Nano 1(1):47–52CrossRefGoogle Scholar
  48. 48.
    Persson BNJ, Lang ND (1982) Electron-hole-pair quenching of excited states near a metal. Phys Rev B 26(10):5409–5415CrossRefGoogle Scholar
  49. 49.
    Chen Y, O’Donoghue MB, Huang Y-F, Kang H, Phillips JA, Chen X, Estevez MC, Yang CJ, Tan W (2010) A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J Am Chem Soc 132(46):16559–16570CrossRefGoogle Scholar
  50. 50.
    Stark RW (2007) Atomic force microscopy: getting a feeling for the nanoworld. Nat Nano 2(8):461–462CrossRefGoogle Scholar
  51. 51.
    Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD (2009) Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat Nano 4(5):307–310CrossRefGoogle Scholar
  52. 52.
    O’Donoghue M, Shi X, Fang X, Tan W (2012) Single-molecule atomic force microscopy on live cells compares aptamer and antibody rupture forces. Anal Bioanal Chem 402(10):3205–3209CrossRefGoogle Scholar
  53. 53.
    Munz M, Murr A, Kvesic M, Rau D, Mangold S, Pflanz S, Lumsden J, Volkland J, Fagerberg J, Riethmuller G, Ruttinger D, Kufer P, Baeuerle P, Raum T (2010) Side-by-side analysis of five clinically tested anti-EpCAM monoclonal antibodies. Cancer Cell Int 10(1):44CrossRefGoogle Scholar
  54. 54.
    Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D, Yu C, Duan W, Yang CJ (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85(8):4141–4149CrossRefGoogle Scholar
  55. 55.
    Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJP, Weiner LM, Marks JD, Adams GP (2011) Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res 71(6):2250–2259CrossRefGoogle Scholar
  56. 56.
    Liu Z, Duan J-H, Song Y-M, Ma J, Wang F-D, Lu X, Yang X-D (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10(1):148CrossRefGoogle Scholar
  57. 57.
    Kalai M, Montero-Julian FA, Grötzinger J, Fontaine V, Vandenbussche P, Deschuyteneer R, Wollmer A, Brailly H, Content J (1997) Analysis of the human interleukin-6/human interleukin-6 receptor binding interface at the amino acid level: proposed mechanism of interaction. Blood 89:1319–1333 Google Scholar
  58. 58.
    Meyer C, Eydeler K, Magbanua E, Zivkovic T, Piganeau N, Lorenzen I, Grötzinger J, Mayer G, Rose-John S, Hahn U (2012) Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells. RNA Biol 9(1):67–80CrossRefGoogle Scholar
  59. 59.
    Eble JA, Wucherpfennig KW, Gauthier L, Dersch P, Krukonis E, Isberg RR, Hemler ME (1998) Recombinant soluble human α3β1 integrin: purification, processing, regulation, and specific binding to laminin-5 and invasin in a mutually exclusive manner. Biochemistry 37(31):10945–10955CrossRefGoogle Scholar
  60. 60.
    Mi J, Zhang X, Giangrande PH, McNamara Ii JO, Nimjee SM, Sarraf-Yazdi S, Sullenger BA, Clary BM (2005) Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem Biophys Res Commun 338(2):956–963CrossRefGoogle Scholar
  61. 61.
    Lavrsen K, Madsen C, Rasch M, Woetmann A, Ødum N, Mandel U, Clausen H, Pedersen A, Wandall H (2013) Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Glycoconj J 30(3):227–236CrossRefGoogle Scholar
  62. 62.
    Ferreira CSM, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol 27(6):289–301CrossRefGoogle Scholar
  63. 63.
    Fretto LJ, Snape AJ, Tomlinson JE, Seroogy JJ, Wolf DL, LaRochelle WJ, Giese NA (1993) Mechanism of platelet-derived growth factor (PDGF) AA, AB, and BB binding to alpha and beta PDGF receptor. J Biol Chem 268(5):3625–3631Google Scholar
  64. 64.
    Green LS, Jellinek D, Jenison R, Östman A, Heldin C-H, Janjic N (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35(45):14413–14424CrossRefGoogle Scholar
  65. 65.
    Smith-Jones PM, Vallabahajosula S, Goldsmith SJ, Navarro V, Hunter CJ, Bastidas D, Bander NH (2000) In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res 60(18):5237–5243Google Scholar
  66. 66.
    Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62(14):4029–4033Google Scholar
  67. 67.
    Yang M, Jiang G, Li W, Qiu K, Zhang M, Carter C, Al-Quran S, Li Y (2014) Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J Hematol Oncol 7(1):5CrossRefGoogle Scholar
  68. 68.
    Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci 93(20):10657–10661CrossRefGoogle Scholar
  69. 69.
    Cerchia L, Ducongé F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V, Libri D (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 3(4):e123CrossRefGoogle Scholar
  70. 70.
    Witte L, Hicklin D, Zhu Z, Pytowski B, Kotanides H, Rockwell P, Böhlen P (1998) Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev 17(2):155–161CrossRefGoogle Scholar
  71. 71.
    Green LS, Jellinek D, Bell C, Beebe LA, Feistner BD, Gill SC, Jucker FM, Janjić N (1995) Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol 2(10):683–695CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Genentech Inc.South San FranciscoUSA
  2. 2.Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain InstituteUniversity of FloridaGainesvilleUSA
  3. 3.Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular MedicineHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations