Cell-SELEX: Aptamer Selection Against Whole Cells

  • Dihua ShangguanEmail author
  • Tao Bing
  • Nan Zhang


Changes at the molecular level always occur at different stages in diseased cells. The detection of these changes is critical for understanding the molecular mechanisms underlying pathogenesis, as well as accurately diagnosing disease states and monitoring therapeutic modalities. Cell-SELEX is a foundational tool used to select probes able to recognize molecular signatures on the surface of diseased cells. This technology has been increasingly used in biomarker discovery, as well as cancer diagnosis and therapy. In this chapter, the whole cell-SELEX process is described, including aptamer selection, identification, and validation. In addition, we will explore the challenges and prospects for cell-SELEX now and in the coming years. It is anticipated that this chapter will guide readers toward a better understanding of the working principles underlying the cell-SELEX technology and serve as a practical reference for bench scientists engaged in cell and molecular biology.


Aptamers Cell-SELEX Molecular probes Biomarkers Molecular recognition 


  1. 1.
    Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113(4):2842–2862. doi: 10.1021/cr300468w CrossRefGoogle Scholar
  2. 2.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi: 10.1038/346818a0 CrossRefGoogle Scholar
  3. 3.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510CrossRefGoogle Scholar
  4. 4.
    Lee JF, Stovall GM, Ellington AD (2006) Aptamer therapeutics advance. Curr Opin Chem Biol 10(3):282–289. doi: 10.1016/j.cbpa.2006.03.015 CrossRefGoogle Scholar
  5. 5.
    Morris KN, Jensen KB, Julin CM, Weil M, Gold L (1998) High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci USA 95(6):2902–2907. doi: 10.1073/pnas.95.6.2902 CrossRefGoogle Scholar
  6. 6.
    Blank M, Weinschenk T, Priemer M, Schluesener H (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem 276(19):16464–16468. doi: 10.1074/jbc.M100347200 CrossRefGoogle Scholar
  7. 7.
    Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA 100(26):15416–15421. doi: 10.1073/pnas.2136683100 CrossRefGoogle Scholar
  8. 8.
    Wang C, Zhang M, Yang G, Zhang D, Ding H, Wang H, Fan M, Shen B, Shao N (2003) Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol 102(1):15–22CrossRefGoogle Scholar
  9. 9.
    Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103(32):11838–11843. doi: 10.1073/pnas.0602615103 CrossRefGoogle Scholar
  10. 10.
    Jiang GH, Zhang M, Yue BH, Yang ML, Carter C, Al-Quran SZ, Li B, Li Y (2012) PTK7: a new biomarker for immunophenotypic characterization of maturing T cells and T cell acute lymphoblastic leukemia. Leuk Res 36(11):1347–1353. doi: 10.1016/j.leukres.2012.07.004 CrossRefGoogle Scholar
  11. 11.
    Shangguan D, Cao ZH, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan WH (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7(5):2133–2139. doi: 10.1021/pr700894d CrossRefGoogle Scholar
  12. 12.
    Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan W (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79(13):4900–4907. doi: 10.1021/ac070189y CrossRefGoogle Scholar
  13. 13.
    Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z, Meng L, Smith JE, Tan W (2008) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3(6):991–1001. doi: 10.1002/cmdc.200800030 CrossRefGoogle Scholar
  14. 14.
    Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y, Cardona D, Witek RP, Liu C, Tan W (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80(3):721–728. doi: 10.1021/ac701962v CrossRefGoogle Scholar
  15. 15.
    Li WM, Bing T, Wei JY, Chen ZZ, Shangguan DH, Fang J (2014) Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials 35(25):6998–7007. doi: 10.1016/j.biomaterials.2014.04.112 CrossRefGoogle Scholar
  16. 16.
    Wang Y, Luo Y, Bing T, Chen Z, Lu M, Zhang N, Shangguan D, Gao X (2014) DNA aptamer evolved by cell-SELEX for recognition of prostate cancer. PLoS ONE 9(6):e100243. doi: 10.1371/journal.pone.0100243 CrossRefGoogle Scholar
  17. 17.
    Sefah K, Bae KM, Phillips JA, Siemann DW, Su Z, McClellan S, Vieweg J, Tan W (2013) Cell-based selection provides novel molecular probes for cancer stem cells. Int J Cancer 132(11):2578–2588. doi: 10.1002/ijc.27936 CrossRefGoogle Scholar
  18. 18.
    Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D, Li Y, Parekh P, Martin J, Meng L, Phillips JA, Kim YM, Tan WH (2009) Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 23(2):235–244. doi: 10.1038/leu.2008.335 CrossRefGoogle Scholar
  19. 19.
    Tang Z, Parekh P, Turner P, Moyer RW, Tan W (2009) Generating aptamers for recognition of virus-infected cells. Clin Chem 55(4):813–822. doi: 10.1373/clinchem.2008.113514 CrossRefGoogle Scholar
  20. 20.
    Zhao Z, Xu L, Shi X, Tan W, Fang X, Shangguan D (2009) Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst 134(9):1808–1814. doi: 10.1039/b904476k CrossRefGoogle Scholar
  21. 21.
    Parekh P, Tang Z, Turner PC, Moyer RW, Tan W (2010) Aptamers recognizing glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal Chem 82(20):8642–8649. doi: 10.1021/ac101801j CrossRefGoogle Scholar
  22. 22.
    Sefah K, Meng L, Lopez-Colon D, Jimenez E, Liu C, Tan W (2010) DNA aptamers as molecular probes for colorectal cancer study. PLoS ONE 5(12):e14269. doi: 10.1371/journal.pone.0014269 CrossRefGoogle Scholar
  23. 23.
    Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403. doi: 10.1016/j.bioeng.2007.06.001 CrossRefGoogle Scholar
  24. 24.
    Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protoc 5(6):1169–1185. doi: 10.1038/nprot.2010.66 CrossRefGoogle Scholar
  25. 25.
    Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D, Schmidt PG, Warren S (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276(52):48644–48654. doi: 10.1074/jbc.M104651200 CrossRefGoogle Scholar
  26. 26.
    Liu J, Liu H, Sefah K, Liu B, Pu Y, Van Simaeys D, Tan W (2012) Selection of aptamers specific for adipose tissue. PLoS ONE 7(5):e37789. doi: 10.1371/journal.pone.0037789 CrossRefGoogle Scholar
  27. 27.
    Cao XX, Li SH, Chen LC, Ding HM, Xu H, Huang YP, Li J, Liu NL, Cao WH, Zhu YJ, Shen BF, Shao NS (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37:4621–4628. doi: 10.1093/nar/gkp489
  28. 28.
    Turek D, Van Simaeys D, Johnson J, Ocsoy I, Tan W (2013) Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers. World J Transl Med 2(3):67–74. doi: 10.5528/wjtm.v2.i3.67 CrossRefGoogle Scholar
  29. 29.
    Bayrac AT, Sefah K, Parekh P, Bayrac C, Gulbakan B, Oktem HA, Tan W (2011) In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem Neurosci 2(3):175–181. doi: 10.1021/cn100114k CrossRefGoogle Scholar
  30. 30.
    Jimenez E, Sefah K, Lopez-Colon D, Van Simaeys D, Chen HW, Tockman MS, Tan W (2012) Generation of lung adenocarcinoma DNA aptamers for cancer studies. PLoS ONE 7(10):e46222. doi: 10.1371/journal.pone.0046222 CrossRefGoogle Scholar
  31. 31.
    Bing T, Yang XJ, Mei HC, Cao ZH, Shangguan DH (2010) Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. Bioorg Med Chem 18(5):1798–1805. doi: 10.1016/j.bmc.2010.01.054 CrossRefGoogle Scholar
  32. 32.
    Shangguan D, Tang ZW, Mallikaratchy P, Xiao ZY, Tan WH (2007) Optimization and modifications of aptamers selected from live cancer cell lines. ChemBioChem 8(6):603–606. doi: 10.1002/cbic.200600532 CrossRefGoogle Scholar
  33. 33.
    Legiewicz M, Yarus M (2005) A more complex isoleucine aptamer with a cognate triplet. J Biol Chem 280(20):19815–19822. doi: 10.1074/jbc.M502329200 CrossRefGoogle Scholar
  34. 34.
    Manimala JC, Wiskur SL, Ellington AD, Anslyn EV (2004) Tuning the specificity of a synthetic receptor using a selected nucleic acid receptor. J Am Chem Soc 126(50):16515–16519. doi: 10.1021/ja0478476 CrossRefGoogle Scholar
  35. 35.
    Sayer NM, Cubin M, Rhie A, Bullock M, Tahiri-Alaoui A, James W (2004) Structural determinants of conformationally selective, prion-binding aptamers. J Biol Chem 279(13):13102–13109. doi: 10.1074/jbc.M310928200 CrossRefGoogle Scholar
  36. 36.
    Green LS, Jellinek D, Jenison R, Ostman A, Heldin CH, Janjic N (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35(45):14413–14424. doi: 10.1021/bi961544+ CrossRefGoogle Scholar
  37. 37.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415CrossRefGoogle Scholar
  38. 38.
    Mei HC, Bing T, Yang XJ, Qi C, Chang TJ, Liu XJ, Cao ZH, Shangguan DH (2012) Functional-group specific aptamers indirectly recognizing compounds with alkyl amino group. Anal Chem 84(17):7323–7329. doi: 10.1021/ac300281u CrossRefGoogle Scholar
  39. 39.
    Qi C, Bing T, Mei HC, Yang XJ, Liu XJ, Shangguan DH (2013) G-quadruplex DNA aptamers for zeatin recognizing. Biosens Bioelectron 41:157–162. doi: 10.1016/j.bios.2012.08.004 CrossRefGoogle Scholar
  40. 40.
    Yang XJ, Bing T, Mei HC, Fang CL, Cao ZH, Shangguan DH (2011) Characterization and application of a DNA aptamer binding to L-tryptophan. Analyst 136(3):577–585. doi: 10.1039/c0an00550a CrossRefGoogle Scholar
  41. 41.
    Bing T, Chang TJ, Yang XJ, Mei HC, Liu XJ, Shangguan DH (2011) G-quadruplex DNA aptamers generated for systemin. Bioorg Med Chem 19(14):4211–4219. doi: 10.1016/j.bmc.2011.05.061 CrossRefGoogle Scholar
  42. 42.
    Xiao Z, Shangguan D, Cao Z, Fang X, Tan W (2008) Cell-specific internalization study of an aptamer from whole cell selection. Chem (Easton) 14(6):1769–1775. doi: 10.1002/chem.200701330 Google Scholar
  43. 43.
    Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57. doi: 10.1021/ar900101s CrossRefGoogle Scholar
  44. 44.
    Pu Y, Zhu Z, Liu H, Zhang J, Liu J, Tan W (2010) Using aptamers to visualize and capture cancer cells. Anal Bioanal Chem 397(8):3225–3233. doi: 10.1007/s00216-010-3715-7 CrossRefGoogle Scholar
  45. 45.
    Ye M, Hu J, Peng M, Liu J, Liu J, Liu H, Zhao X, Tan W (2012) Generating aptamers by cell-SELEX for applications in molecular medicine. Int J Mol Sci 13(3):3341–3353. doi: 10.3390/ijms13033341 CrossRefGoogle Scholar
  46. 46.
    Meyer C, Hahn U, Rentmeister A (2011) Cell-specific aptamers as emerging therapeutics. J Nucleic Acids 2011:904750. doi: 10.4061/2011/904750 CrossRefGoogle Scholar
  47. 47.
    Van Simaeys D, Turek D, Champanhac C, Vaizer J, Sefah K, Zhen J, Sutphen R, Tan WH (2014) Identification of cell membrane protein stress-induced phosphoprotein 1 as a potential ovarian cancer biomarker using aptamers selected by cell systematic evolution of ligands by exponential enrichment. Anal Chem 86(9):4521–4527. doi: 10.1021/ac500466x CrossRefGoogle Scholar
  48. 48.
    Mallikaratchy P, Tang ZW, Kwame S, Meng L, Shangguan DH, Tan WH (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 6(12):2230–2238. doi: 10.1074/mcp.M700026-MCP200 CrossRefGoogle Scholar
  49. 49.
    Yang ML, Jiang GH, Li WJ, Qiu K, Zhang M, Carter CM, Al-Quran SZ, Li Y (2014) Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J Hematol Oncol 7:14. doi: 10.1186/1756-8722-7-5 CrossRefGoogle Scholar
  50. 50.
    Raddatz MS, Dolf A, Endl E, Knolle P, Famulok M, Mayer G (2008) Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew Chem Int Ed Engl 47(28):5190–5193. doi: 10.1002/anie.200800216 CrossRefGoogle Scholar
  51. 51.
    Mayer G, Ahmed MS, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc 5(12):1993–2004. doi: 10.1038/nprot.2010.163 CrossRefGoogle Scholar
  52. 52.
    Hung LY, Wang CH, Hsu KF, Chou CY, Lee GB (2014) An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells. Lab Chip. doi: 10.1039/c4lc00587b Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations