The Clinical Application of Aptamers: Future Challenges and Prospects

  • Yanling Song
  • Huimin Zhang
  • Zhi Zhu
  • Chaoyong YangEmail author


This final chapter attempts to search for reasons to explain why so little progress has been made in the practical clinical application of aptamers and propose potential solutions to the problem. The advantages and limitations of aptamers in clinical settings are first carefully evaluated. It is suggested that in order to increase the clinical application of aptamers, new selection methods are needed to further improve the success rate of aptamer selection and to efficiently generate stable aptamers for in vivo application with low cost. Several new and promising aptamer selection methods are then reviewed. Strategies for improving selection success rate are highlighted. Finally, efforts leading to the selection of stable aptamers and, hence, increasing the potential for the practical use of aptamer-based technology in clinical settings, are discussed.


Aptamer Base modification Spiegelmer Microfluidics SELEX 


  1. 1.
    Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57. doi: 10.1021/ar900101s CrossRefGoogle Scholar
  2. 2.
    Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discovery 9(7):537–550. doi: 10.1038/nrd3141 CrossRefGoogle Scholar
  3. 3.
    Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83(12):4440–4452. doi: 10.1021/ac201057w CrossRefGoogle Scholar
  4. 4.
    Tan W, Wang H, Chen Y, Zhang X, Zhu H, Yang C, Yang R, Liu C (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29(12):634–640. doi: 10.1016/j.tibtech.2011.06.009 CrossRefGoogle Scholar
  5. 5.
    Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113(4):2842–2862. doi: 10.1021/cr300468w CrossRefGoogle Scholar
  6. 6.
    Yan L, Zhu Z, Zou Y, Huang Y, Liu D, Jia S, Xu D, Wu M, Zhou Y, Zhou S, Yang CJ (2013) Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J Am Chem Soc 135(10):3748–3751. doi: 10.1021/ja3114714 CrossRefGoogle Scholar
  7. 7.
    Willner I, Zayats M (2007) Electronic aptamer-based sensors. Angew Chem 46(34):6408–6418. doi: 10.1002/anie.200604524 CrossRefGoogle Scholar
  8. 8.
    Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan W (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Nat Acad Sci USA 102(48):17278–17283. doi: 10.1073/pnas.0508821102 CrossRefGoogle Scholar
  9. 9.
    Rupcich N, Nutiu R, Li Y, Brennan JD (2006) Solid-phase enzyme activity assay utilizing an entrapped fluorescence-signaling DNA aptamer. Angew Chem 45(20):3295–3299. doi: 10.1002/anie.200504576 CrossRefGoogle Scholar
  10. 10.
    Liu J, Lu Y (2005) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem 45(1):90–94. doi: 10.1002/anie.200502589 CrossRefGoogle Scholar
  11. 11.
    Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1(1):246–252. doi: 10.1038/nprot.2006.38 CrossRefGoogle Scholar
  12. 12.
    Zhu Z, Wu C, Liu H, Zou Y, Zhang X, Kang H, Yang CJ, Tan W (2010) An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew Chem 49(6):1052–1056. doi: 10.1002/anie.200905570 CrossRefGoogle Scholar
  13. 13.
    Freeman R, Liu X, Willner I (2011) Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133(30):11597–11604. doi: 10.1021/ja202639m CrossRefGoogle Scholar
  14. 14.
    Ohno Y, Maehashi K, Matsumoto K (2010) Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc 132(51):18012–18013. doi: 10.1021/ja108127r CrossRefGoogle Scholar
  15. 15.
    Lee SJ, Youn BS, Park JW, Niazi JH, Kim YS, Gu MB (2008) ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal Chem 80(8):2867–2873. doi: 10.1021/ac800050a CrossRefGoogle Scholar
  16. 16.
    Zhou WJ, Halpern AR, Seefeld TH, Corn RM (2012) Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays. Anal Chem 84(1):440–445. doi: 10.1021/ac202863k CrossRefGoogle Scholar
  17. 17.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510CrossRefGoogle Scholar
  18. 18.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822CrossRefGoogle Scholar
  19. 19.
    Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjic N (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273(32):20556–20567CrossRefGoogle Scholar
  20. 20.
    Wu ZS, Guo MM, Zhang SB, Chen CR, Jiang JH, Shen GL, Yu RQ (2007) Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem 79(7):2933–2939. doi: 10.1021/ac0622936 CrossRefGoogle Scholar
  21. 21.
    Shigdar S, Qiao L, Zhou S-F, Xiang D, Wang T, Li Y, Lim LY, Kong L, Li L, Duan W (2013) RNA aptamers targeting cancer stem cell marker CD133. Cancer Lett 330(1):84–95CrossRefGoogle Scholar
  22. 22.
    Famulok M, Mayer G (2011) Aptamer modules as sensors and detectors. Acc Chem Res 44(12):1349–1358. doi: 10.1021/ar2000293 CrossRefGoogle Scholar
  23. 23.
    Davies DR, Gelinas AD, Zhang C, Rohloff JC, Carter JD, O’Connell D, Waugh SM, Wolk SK, Mayfield WS, Burgin AB, Edwards TE, Stewart LJ, Gold L, Janjic N, Jarvis TC (2012) Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc Nat Acad Sci USA 109(49):19971–19976. doi: 10.1073/pnas.1213933109 CrossRefGoogle Scholar
  24. 24.
    Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protocols 5(6):1169–1185CrossRefGoogle Scholar
  25. 25.
    Mendonsa SD, Bowser MT (2004) In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 126(1):20–21. doi: 10.1021/ja037832s CrossRefGoogle Scholar
  26. 26.
    Mendonsa SD, Bowser MT (2004) In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal Chem 76(18):5387–5392. doi: 10.1021/ac049857v CrossRefGoogle Scholar
  27. 27.
    Mosing RK, Mendonsa SD, Bowser MT (2005) Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem 77(19):6107–6112. doi: 10.1021/ac050836q CrossRefGoogle Scholar
  28. 28.
    Tok J, Lai J, Leung T, Li SF (2010) Selection of aptamers for signal transduction proteins by capillary electrophoresis. Electrophoresis 31(12):2055–2062. doi: 10.1002/elps.200900543 CrossRefGoogle Scholar
  29. 29.
    Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A, Krylov SN (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc 127(9):3165–3171. doi: 10.1021/ja042394q CrossRefGoogle Scholar
  30. 30.
    Drabovich A, Berezovski M, Krylov SN (2005) Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). J Am Chem Soc 127(32):11224–11225. doi: 10.1021/ja0530016 CrossRefGoogle Scholar
  31. 31.
    Drabovich AP, Berezovski M, Okhonin V, Krylov SN (2006) Selection of smart aptamers by methods of kinetic capillary electrophoresis. Anal Chem 78(9):3171–3178. doi: 10.1021/ac060144h CrossRefGoogle Scholar
  32. 32.
    Mendonsa SD, Bowser MT (2005) In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc 127(26):9382–9383. doi: 10.1021/ja052406n CrossRefGoogle Scholar
  33. 33.
    Yang J, Bowser MT (2013) Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target. Anal Chem 85(3):1525–1530. doi: 10.1021/ac302721j CrossRefGoogle Scholar
  34. 34.
    Mosing RK, Bowser MT (2007) Microfluidic selection and applications of aptamers. J Sep Sci 30(10):1420–1426. doi: 10.1002/jssc.200600483 CrossRefGoogle Scholar
  35. 35.
    Xu Y, Yang X, Wang E (2010) Review: aptamers in microfluidic chips. Anal Chim Acta 683(1):12–20. doi: 10.1016/j.aca.2010.10.007 CrossRefGoogle Scholar
  36. 36.
    Weng CH, Huang CJ, Lee GB (2012) Screening of aptamers on microfluidic systems for clinical applications. Sensors 12(7):9514–9529. doi: 10.3390/s120709514 CrossRefGoogle Scholar
  37. 37.
    Lin H, Zhang W, Jia S, Guan Z, Yang CJ, Zhu Z (2014) Microfluidic approaches to rapid and efficient aptamer selection. Biomicrofluidics 8(4):041501. doi: 10.1063/1.4890542 CrossRefGoogle Scholar
  38. 38.
    Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Nat Acad Sci USA 106(9):2989–2994. doi: 10.1073/pnas.0813135106 CrossRefGoogle Scholar
  39. 39.
    Zhang WY, Zhang WH, Liu ZY, Li C, Zhu Z, Yang CJ (2011) A highly parallel single molecule amplification approach based on agarose droplet PCR for efficient and cost-effective aptamer selection. analytical chemistry, Washington, DC, United States 83 (in press)Google Scholar
  40. 40.
    Zhu Z, Song Y, Li C, Zou Y, Zhu L, An Y, Yang CJ (2014) Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification. Anal Chem 86:5881–5888. doi: 10.1021/ac501423g CrossRefGoogle Scholar
  41. 41.
    Metzker ML (2010) Applications of next-generation sequencing sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46. doi: 10.1038/Nrg2626 CrossRefGoogle Scholar
  42. 42.
    Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145. doi: 10.1038/Nbt1486 CrossRefGoogle Scholar
  43. 43.
    Zimmermann B, Gesell T, Chen D, Lorenz C, Schroeder R (2010) Monitoring genomic sequences during SELEX using high-throughput sequencing: neutral SELEX. Plos ONE 5(2):e9169. doi: 10.1371/Journal.Pone.0009169 ArtnCrossRefGoogle Scholar
  44. 44.
    Schütze T, Wilhelm B, Greiner N, Braun H, Peter F, Morl M, Erdmann VA, Lehrach H, Konthur Z, Menger M, Arndt PF, Glokler J (2011) Probing the SELEX process with next-generation sequencing. Plos ONE 6(12):e29604. doi: 10.1371/journal.pone.0029604 ARTNCrossRefGoogle Scholar
  45. 45.
    Hoon S, Zhou B, Janda KD, Brenner S, Scolnick J (2011) Aptamer selection by high-throughput sequencing and informatic analysis. Biotechniques 51(6):413–416. doi: 10.2144/000113786 CrossRefGoogle Scholar
  46. 46.
    Cho M, Xiao Y, Nie J, Stewart R, Csordas AT, Oh SS, Thomson JA, Soh HT (2010) Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. P Natl Acad Sci USA 107(35):15373–15378. doi: 10.1073/pnas.1009331107 CrossRefGoogle Scholar
  47. 47.
    Cho M, Oh SS, Nie J, Stewart R, Eisenstein M, Chambers J, Marth JD, Walker F, Thomson JA, Soh HT (2013) Quantitative selection and parallel characterization of aptamers. Proc Nat Acad Sci USA 110(46):18460–18465. doi: 10.1073/pnas.1315866110 CrossRefGoogle Scholar
  48. 48.
    Wilson R, Bourne C, Chaudhuri RR, Gregory R, Kenny J, Cossins A (2014) Single-step selection of bivalent aptamers validated by comparison with SELEX using high-throughput sequencing. Plos ONE 9(6):e100572. doi: 10.1371/journal.pone.0100572 ARTNCrossRefGoogle Scholar
  49. 49.
    Dewey TM, Mundit A, Crouch GJ, Zyzniewski MC, Eaton BE (1995) New uridine derivatives for systematic evolution of RNA ligands by exponential enrichment. J Am Chem Soc 117(32):8474–8475. doi: 10.1021/Ja00137a027 CrossRefGoogle Scholar
  50. 50.
    Eaton BE (1997) The joys of in vitro selection: chemically dressing oligonucleotides to satiate protein targets. Curr Opin Chem Biol 1(1):10–16CrossRefGoogle Scholar
  51. 51.
    Tarasow TM, Tarasow SL, Eaton BE (1997) RNA-catalysed carbon-carbon bond formation. Nature 389(6646):54–57. doi: 10.1038/37950 CrossRefGoogle Scholar
  52. 52.
    Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5(12):e15004. doi: 10.1371/journal.pone.0015004 CrossRefGoogle Scholar
  53. 53.
    Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31(5):453–457. doi: 10.1038/nbt.2556 CrossRefGoogle Scholar
  54. 54.
    Sefah K, Yang Z, Bradley KM, Hoshika S, Jimenez E, Zhang L, Zhu G, Shanker S, Yu F, Turek D, Tan W, Benner SA (2014) In vitro selection with artificial expanded genetic information systems. Proc Nat Acad Sci USA 111(4):1449–1454. doi: 10.1073/pnas.1311778111 CrossRefGoogle Scholar
  55. 55.
    Keefe AD, Cload ST (2008) SELEX with modified nucleotides. Curr Opin Chem Biol 12(4):448–456. doi: 10.1016/j.cbpa.2008.06.028 CrossRefGoogle Scholar
  56. 56.
    Uhlmann E, Peyman A, Ryte A, Schmidt A, Buddecke E (2000) Use of minimally modified antisense oligonucleotides for specific inhibition of gene expression. Methods Enzymol 313:268–284CrossRefGoogle Scholar
  57. 57.
    Sousa R, Padilla R (1995) A mutant T7 RNA polymerase as a DNA polymerase. EMBO J 14(18):4609–4621Google Scholar
  58. 58.
    Padilla R, Sousa R (2002) A Y639F/H784A T7 RNA polymerase double mutant displays superior properties for synthesizing RNAs with non-canonical NTPs. Nucleic Acids Res 30(24):e138CrossRefGoogle Scholar
  59. 59.
    Ibach J, Dietrich L, Koopmans KR, Nobel N, Skoupi M, Brakmann S (2013) Identification of a T7 RNA polymerase variant that permits the enzymatic synthesis of fully 2′-O-methyl-modified RNA. J Biotechnol 167(3):287–295. doi: 10.1016/j.jbiotec.2013.07.005 CrossRefGoogle Scholar
  60. 60.
    Leva S, Lichte A, Burmeister J, Muhn P, Jahnke B, Fesser D, Erfurth J, Burgstaller P, Klussmann S (2002) GnRH binding RNA and DNA Spiegelmers: a novel approach toward GnRH antagonism. Chem Biol 9(3):351–359CrossRefGoogle Scholar
  61. 61.
    Hornby PJ (2006) Designing Spiegelmers to antagonise ghrelin. Gut 55(6):754–755. doi: 10.1136/gut.2005.076067 CrossRefGoogle Scholar
  62. 62.
    Szeitner Z, Lautner G, Nagy SK, Gyurcsanyi RE, Meszaros T (2014) A rational approach for generating cardiac troponin I selective Spiegelmers. Chem Commun 50(51):6801–6804. doi: 10.1039/c4cc00447g CrossRefGoogle Scholar
  63. 63.
    Ashrafuzzaman M, Tseng CY, Kapty J, Mercer JR, Tuszynski JA (2013) A computationally designed DNA aptamer template with specific binding to phosphatidylserine. Nucleic Acid Therapeutics 23(6):418–426. doi: 10.1089/nat.2013.0415 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yanling Song
    • 1
  • Huimin Zhang
    • 1
  • Zhi Zhu
    • 1
  • Chaoyong Yang
    • 1
    Email author
  1. 1.Department of Chemical BiologyCollege of Chemistry and Chemical Engineering, Xiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations