Abstract
Aptamers provide several advantages such as efficient and widely applicable selection technology, reproducible chemical synthesis and modification, generally impressive target binding selectivity and affinity, as well as relatively rapid tissue penetration and low immunogenicity, making them as emerging probes that rivals antibodies in biomedical applications. Recent studies showed that the development of aptamer–drug conjugates and aptamer-conjugated nanoparticles (e.g., gold and magnetic nanoparticles) offers new theranostic opportunities for cancer treatment with better efficacy and lower side effects than traditional chemotherapeutic methods. In this chapter, we discuss the current progress in aptamer-mediated targeted delivery for chemotherapy, phototherapy (e.g., photodynamic therapy and photothermal therapy), and combinational therapy. Conjugation strategies operative through a variety of chemical reactions or physical interactions are also highlighted.
Keywords
- Aptamer
- Aptamer–drug conjugates
- Gold nanoparticles
- Magnetic nanoparticles
- Targeted cancer therapy
This is a preview of subscription content, access via your institution.
Buying options










References
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nutr Metab 7:7
Wang ZW, Li YW, Ahmad A, Azmi AS, Kong DJ, Banerjee S, Sarkar FH (2010) Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Update 13:109–118
Xu L (2013) Cancer stem cell in the progression and therapy of pancreatic cancer. Front Biosci-Landmrk 18:795–802
Haq R, Fisher DE (2011) Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. J Clin Oncol 29:3474–3482
Kanavos P (2006) The rising burden of cancer in the developing world. Ann Oncol 17:15–23
Siegel R, Ma JM, Zou ZH, Jemal A (2014) Cancer statistics, 2014. Ca-Cancer J Clin 64:9–29
DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A (2014) Cancer treatment and survivorship statistics, 2014. Ca-Cancer J Clin 64:252–271
Chabner BA, Roberts TG (2005) Timeline—chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72
DeVita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68:8643–8653
Chari RVJ (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107
Gerber DE (2008) Targeted therapies: a new generation of cancer treatments. Am Fam Phys 77:311–319
Imai K, Takaoka A (2006) Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 6:714–727
Andre N, Carre M, Pasquier E (2014) Metronomics: towards personalized chemotherapy? Nat Rev Clin Oncol 11:413–431
Yan L, Hsu K, Beckman RA (2008) Antibody-based therapy for solid tumors. Cancer J 14:178–183
Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159
Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14:529–537
Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29
Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822
Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW, Mallikaratchy P, Sefah K, Yang CYJ, Tan WH (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. P Natl Acad Sci USA 103:11838–11843
Sefah K, Shangguan D, Xiong XL, O’Donoghue MB, Tan WH (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169–1185
Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Edit 48:2672–2689
Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5:2957–2962
Guo KT, Paul A, Schichor C, Ziemer G, Wendel HP (2008) Cell-SELEX: novel perspectives of aptamer-based therapeutics. Int J Mol Sci 9:668–678
Fang XH, Tan WH (2010) Aptamers generated from Cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43:48–57
Sundaram P, Kurniawan H, Byrne ME, Wower J (2013) Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 48:259–271
Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164
Huang YF, Shangguan DH, Liu HP, Phillips JA, Zhang XL, Chen Y, Tan WH (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. ChemBioChem 10:862–868
Tan WH, Wang H, Chen Y, Zhang XB, Zhu HZ, Yang CY, Yang RH, Liu C (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29:634–640
Huang YF, Kim Y, Meng L, Tan WH (2009) Assembly of aptamer conjugates as molecular tools in therapeutics. Chim Oggi 27:52–54
Wu Z, Tang LJ, Zhang XB, Jiang JH, Tan WH (2011) Aptamer-modified nanodrug delivery systems. Acs NANO 5:7696–7699
Liu QL, Jin C, Wang YY, Fang XH, Zhang XB, Chen Z, Tan WH (2014) Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. Npg Asia Mater 6:e95
Chen T, Shukoor MI, Chen Y, Yuan QA, Zhu Z, Zhao ZL, Gulbakan B, Tan WH (2011) Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. Nanoscale 3:546–556
Yang L, Zhang XB, Ye M, Jiang JH, Yang RH, Fu T, Chen Y, Wang KM, Liu C, Tan WH (2011) Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliver Rev 63:1361–1370
Kong RM, Zhang XB, Chen Z, Tan WH (2011) Aptamer-assembled nanomaterials for biosensing and biomedical applications. Small 7:2428–2436
Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G (2013) Nanotechnology in cancer therapy. J Drug Target 21:904–913
Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760
Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79
Kumar A, Zhang X, Liang XJ (2013) Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 31:593–606
Peng XH, Qian XM, Mao H, Wang AY, Chen Z, Nie SM, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 3:311–321
Ji SR, Liu C, Zhang B, Yang F, Xu J, Long JA, Jin C, Fu DL, Ni QX, Yu XJ (2010) Carbon nanotubes in cancer diagnosis and therapy. Bba-Rev Cancer 1806:29–35
Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902
Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44:68–97
Blanco E, Kessinger CW, Sumer BD, Gao J (2009) Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med 234:123–131
Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419
Jain RK (1994) Barriers to drug-delivery in solid tumors. Sci Am 271:58–65
Bamrungsap S, Zhao ZL, Chen T, Wang L, Li CM, Fu T, Tan WH (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine-Uk 7:1253–1271
Berdel WE, Fink U (1984) Cancer-chemotherapy—situation problems, perspectives. Munchen Med Wochen 126:1166–1171
Zhou JH, Rossi JJ (2011) Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides 21:1–10
Shangguan D, Cao ZH, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan WH (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139
Boyacioglu O, Stuart CH, Kulik G, Gmeiner WH (2013) Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages. Mol Ther-Nucl Acids 2:e107
Perner S, Hofer MD, Kim R, Shah RB, Li HJ, Moller P, Hautmann RE, Gschwend JE, Kuefer R, Rubin MA (2007) Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 38:696–701
Schulke N, Varlamova OA, Donovan GP, Ma DS, Gardner JP, Morrissey DM, Arrigale RR, Zhan CC, Chodera AJ, Surowitz KG, Maddon PJ, Heston WDW, Olson WC (2003) The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. P Natl Acad Sci USA 100:12590–12595
Aggarwal S, Singh P, Topaloglu O, Isaacs JT, Denmeade SR (2006) A dimeric peptide that binds selectively to prostate-specific membrane antigen and inhibits its enzymatic activity. Cancer Res 66:9171–9177
Wang RW, Zhu GZ, Mei L, Xie Y, Ma HB, Ye M, Qing FL, Tan WH (2014) Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J Am Chem Soc 136:2731–2734
Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Edit 45:8149–8152
Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033
Liu Z, Duan JH, Song YM, Ma J, Wang FD, Lu X, Yang XD (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148
Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN (2009) The HER-2 receptor and breast cancer: ten years of targeted Anti-HER-2 therapy and personalized medicine. Oncologist 14:320–368
Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2009) Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 20:1319–1329
Shangguan DH, Meng L, Cao ZHC, Xiao ZY, Fang XH, Li Y, Cardona D, Witek RP, Liu C, Tan WH (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80:721–728
Shangguan DH, Cao ZHC, Li Y, Tan WH (2007) Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem 53:1153–1155
Zhu GZ, Meng L, Ye M, Yang L, Sefah K, O’Donoghue MB, Chen Y, Xiong XL, Huang J, Song EQ, Tan WH (2012) Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem-Asian J 7:1630–1636
Zhu GZ, Zheng J, Song EQ, Donovan M, Zhang KJ, Liu C, Tan WH (2013) Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. P Natl Acad Sci USA 110:7998–8003
Zhang ZQ, Ali MM, Eckert MA, Kang DK, Chen YY, Sender LS, Fruman DA, Zhao WA (2013) A polyvalent aptamer system for targeted drug delivery. Biomaterials 34:9728–9735
Kim Y, Cao Z, Tan W (2008) Molecular assembly for high-performance bivalent nucleic acid inhibitor. P Natl Acad Sci USA 105:5664–5669
Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer I 90:889–905
Nseyo UO, DeHaven J, Dougherty TJ, Potter WR, Merrill DL, Lundahl SL, Lamm DL (1998) Photodynamic therapy (PDT) in the treatment of patients with resistant superficial bladder cancer: a long term experience. J Clin Laser Med Sur 16:61–68
Huang Z (2005) A review of progress in clinical photodynamic therapy. Technol Cancer Res T 4:283–293
Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109
Moan J (1990) On the diffusion length of singlet oxygen in cells and tissues. J Photoch Photobio B 6:343–347
Bugaj AM (2011) Targeted photodynamic therapy—a promising strategy of tumor treatment. Photoch Photobio Sci 10:1097–1109
Lovell JF, Liu TWB, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110:2839–2857
Verma S, Watt GM, Mal Z, Hasan T (2007) Strategies for enhanced photodynamic therapy effects. Photochem Photobiol 83:996–1005
Tang ZW, Shangguan D, Wang KM, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan WH (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79:4900–4907
Mallikaratchy P, Tang ZW, Tan WH (2008) Cell specific aptamer-photosensitizer conjugates as a molecular tool in photodynamic therapy. ChemMedChem 3:425–428
Kruspe S, Meyer C, Hahn U (2014) Chlorin e6 conjugated interleukin-6 receptor aptamers selectively kill target cells upon irradiation. Mol Ther-Nucl Acids 3:e143
Sen D, Gilbert W (1988) Formation of parallel 4-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366
Ambrus A, Chen D, Dai JX, Bialis T, Jones RA, Yang DZ (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735
Evans T, Schon E, Goramaslak G, Patterson J, Efstratiadis A (1984) S1-hypersensitive sites in eukaryotic promoter regions. Nucleic Acids Res 12:8043–8058
Granotier C, Pennarun G, Riou L, Hoffschir F, Gauthier LR, De Cian A, Gomez D, Mandine E, Riou JF, Mergny JL, Mailliet P, Dutrillaux B, Boussin FD (2005) Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acids Res 33:4182–4190
Zahler AM, Williamson JR, Cech TR, Prescott DM (1991) Inhibition of telomerase by G-quartet DNA structures. Nature 350:718–720
Rha SY, Izbicka E, Lawrence R, Davidson K, Sun DK, Moyer MP, Roodman GD, Hurley L, Von Hoff D (2000) Effect of telomere and telomerase interactive agents on human tumor and normal cell lines. Clin Cancer Res 6:987–993
Shieh YA, Yang SJ, Wei MF, Shieh MJ (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–1442
Wang KL, You MX, Chen Y, Han D, Zhu Z, Huang J, Williams K, Yang CJ, Tan WH (2011) Self-assembly of a bifunctional DNA carrier for drug delivery. Angew Chem Int Edit 50:6098–6101
Zheng G, Chen J, Stefflova K, Jarvi M, Li H, Wilson BC (2007) Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. P Natl Acad Sci USA 104:8989–8994
Tang ZW, Zhu Z, Mallikaratchy P, Yang RH, Sefah K, Tan WH (2010) Aptamer-target binding triggered molecular mediation of singlet oxygen generation. Chem-Asian J 5:783–786
Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. P Natl Acad Sci USA 101:15275–15278
Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–1125
Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322
Han D, Zhu GZ, Wu CC, Zhu Z, Chen T, Zhang XB, Tan WH (2013) Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. ACS Nano 7:2312–2319
Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346
Hakkinen H (2012) The gold-sulfur interface at the nanoscale. Nat Chem 4:443–455
Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347
Boca SC, Astilean S (2010) Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Nanotechnology 21:235601
Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333
Gerber A, Bundschuh M, Klingelhofer D, Groneberg DA (2013) Gold nanoparticles: recent aspects for human toxicology. J Occup Med Toxicol 8:32
Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962
Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B 110:19935–19944
Skrabalak SE, Chen JY, Sun YG, Lu XM, Au L, Cobley CM, Xia YN (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595
Huang XH, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910
Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD, Marquez M, Xia YN (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094
Schoen PAE, Walther JH, Poulikakos D, Koumoutsakos P (2007) Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes. Appl Phys Lett 90:253116
Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J, Hatcher HC, Torti SV, Rylander CG, Rylander MN (2010) Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 70:9855–9864
Dickerson EB, Dreaden EC, Huang XH, El-Sayed IH, Chu HH, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66
Choi WI, Kim JY, Kang C, Byeon CC, Kim YH, Tee G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003
Huang YF, Sefah K, Bamrungsap S, Chang HT, Tan W (2008) Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 24:11860–11865
Huang YF, Chang HT, Tan WH (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80:567–572
Wang J, Sefah K, Altman MB, Chen T, You MX, Zhao ZL, Huang CZ, Tan WH (2013) Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells. Chem-Asian J 8:2417–2422
Yang HW, Lu YJ, Lin KJ, Hsu SC, Huang CY, She SH, Liu HL, Lin CW, Xiao MC, Wey SP, Chen PY, Yen TC, Wei KC, Ma CCM (2013) EGRF conjugated PEGylated nanographene oxide for targeted chemotherapy and photothermal therapy. Biomaterials 34:7204–7214
Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149:65–71
Hegyi G, Szigeti GP, Szasz A (2013) Hyperthermia versus oncothermia: cellular effects in complementary cancer therapy. Evid-Based Compl Alt 2013:672873
You J, Zhang GD, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4:1033–1041
Zhao NX, You J, Zeng ZH, Li C, Zu YL (2013) An ultra pH-sensitive and aptamer-equipped nanoscale drug-delivery system for selective killing of tumor cells. Small 9:3477–3484
Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288
Marsh TC, Vesenka J, Henderson E (1995) A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. Nucleic Acids Res 23:696–700
Yang XJ, Liu X, Liu Z, Pu F, Ren JS, Qu XG (2012) Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv Mater 24:2890–2895
Luo YL, Shiao YS, Huang YF (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5:7796–7804
Kang HZ, Trondoli AC, Zhu GZ, Chen Y, Chang YJ, Liu HP, Huang YF, Zhang XL, Tan WH (2011) Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5:5094–5099
Jang B, Park JY, Tung CH, Kim IH, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094
Kuo WS, Chang CN, Chang YT, Yang MH, Chien YH, Chen SJ, Yeh CS (2010) Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew Chem Int Edit 49:2711–2715
Dulkeith E, Ringler M, Klar TA, Feldmann J, Javier AM, Parak WJ (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5:585–589
Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248
Griffin J, Singh AK, Senapati D, Rhodes P, Mitchell K, Robinson B, Yu E, Ray PC (2009) Size- and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of Hepatitis C Virus RNA. Chem-Eur J 15:342–351
Wang J, Zhu GZ, You MX, Song EQ, Shukoor MI, Zhang KJ, Altman MB, Chen Y, Zhu Z, Huang CZ, Tan WH (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6:5070–5077
Poon L, Zandberg W, Hsiao D, Erno Z, Sen D, Gates BD, Branda NR (2010) Photothermal release of single-stranded DNA from the surface of gold nanoparticles through controlled denaturating and Au–S bond breaking. ACS Nano 4:6395–6403
Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672
Yin ML, Li ZH, Liu Z, Ren JS, Yang XJ, Qu XG (2012) Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Chem Commun 48:6556–6558
Natterer F, Ritman EL (2002) Past and future directions in X-ray computed tomography (CT). Int J Imag Syst Tech 12:175–187
Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J Am Chem Soc 129:7661–7665
Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum Arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3:333–341
Alric C, Taleb J, Le Duc G, Mandon C, Billotey C, Le Meur-Herland A, Brochard T, Vocanson F, Janier M, Perriat P, Roux S, Tillement O (2008) Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–5915
Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696
Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711
Munowitz M, Pines A (1987) Principles and applications of multiple-quantum NMR. Adv Chem Phys 66:1–152
Pan DPJ, Schmieder AH, Wickline SA, Lanza GM (2011) Manganese-based MRI contrast agents: past, present, and future. Tetrahedron 67:8431–8444
Li CM, Chen T, Ocsoy I, Zhu GZ, Yasun E, You MX, Wu CC, Zheng J, Song EQ, Huang CZ, Tan WH (2014) Gold-coated Fe3O4 nanoroses with five unique functions for cancer cell targeting, imaging, and therapy. Adv Funct Mater 24:1772–1780
Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334
Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338
Shubayev VI, Pisanic TR, Jin SH (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477
Sun C, Lee JSH, Zhang MQ (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265
Jun YW, Seo JW, Cheon A (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189
Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110
Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596
Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205
Zhao FY, Zhang BL, Feng LY (2012) Preparation and magnetic properties of magnetite nanoparticles. Mater Lett 68:112–114
Wu W, He QG, Jiang CZ (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415
Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021
Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, Shaikh M, Yuet K, Cima MJ, Langer R, Kantoff PW, Bander NH, Jon SY, Farokhzad OC (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3:1311–1315
Jalalian SH, Taghdisi SM, Hamedani NS, Kalat SAM, Lavaee P, ZandKarimi M, Ghows N, Jaafari MR, Naghibi S, Danesh NM, Ramezani M, Abnous K (2013) Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci 50:191–197
Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–2249
Zheng J, Zhu GZ, Li YH, Li CM, You MX, Chen T, Song EQ, Yang RH, Tan WH (2013) A spherical nucleic acid platform based on self-assembled DNA biopolymer for high-performance cancer therapy. ACS Nano 7:6545–6554
Cheng K, Peng S, Xu CJ, Sun SH (2009) Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc 131:10637–10644
Chen T, Shukoor MI, Wang RW, Zhao ZL, Yuan Q, Bamrungsap S, Xiong XL, Tan WH (2011) Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5:7866–7873
Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808
Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix LM, Gougeon M, Chaudret B, Respaud M (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Funct Mater 21:4573–4581
Johannsen M, Gneueckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1662
Pala K, Serwotka A, Jelen F, Jakimowicz P, Otlewski J (2014) Tumor-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int J Nanomed 9:67–76
Nair BG, Nagaoka Y, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2010) Aptamer conjugated magnetic nanoparticles as nanosurgeons. Nanotechnology 21:455102
Aravind A, Nair R, Raveendran S, Veeranarayanan S, Nagaoka Y, Fukuda T, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2013) Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy. J Magn Magn Mater 344:116–123
Dunne M, Corrigan OI, Ramtoola Z (2000) Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21:1659–1668
Grayson ACR, Cima MJ, Langer R (2005) Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials 26:2137–2145
Koziara JM, Lockman PR, Allen DD, Mumper RJ (2004) Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 99:259–269
Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809
Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Madiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, VanHoff DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413
Sivakumar B, Aswathy RG, Nagaoka Y, Iwai S, Venugopal K, Kato K, Yoshida Y, Maekawa T, Kumar DNS (2013) Aptamer conjugated theragnostic multifunctional magnetic nanoparticles as a nanoplatform for pancreatic cancer therapy. RSC Adv 3:20579–20598
Acknowledgments
We thank the National Tsing Hua University (101N7046E1), the Ministry of Science and Technology (NSC 102-2113-M-007-005-MY3, NSC 102-2627-M-007-004), and the postdoctoral fund of Ministry of Science and Technology (MOST 103-2811-M-007-039) of Taiwan, ROC. Dr. He also thanks the National Natural Science Foundation of China (21405125) and the Fundamental Research Funds for the Central Universities (no. SWU113099) of China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
He, Y., del Valle, A., Huang, YF. (2015). Cell-Specific Aptamers for Targeted Therapy. In: Tan, W., Fang, X. (eds) Aptamers Selected by Cell-SELEX for Theranostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46226-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-662-46226-3_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-46225-6
Online ISBN: 978-3-662-46226-3
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)