Skip to main content

Cell-Specific Aptamers for Targeted Therapy

  • 1715 Accesses

Abstract

Aptamers provide several advantages such as efficient and widely applicable selection technology, reproducible chemical synthesis and modification, generally impressive target binding selectivity and affinity, as well as relatively rapid tissue penetration and low immunogenicity, making them as emerging probes that rivals antibodies in biomedical applications. Recent studies showed that the development of aptamer–drug conjugates and aptamer-conjugated nanoparticles (e.g., gold and magnetic nanoparticles) offers new theranostic opportunities for cancer treatment with better efficacy and lower side effects than traditional chemotherapeutic methods. In this chapter, we discuss the current progress in aptamer-mediated targeted delivery for chemotherapy, phototherapy (e.g., photodynamic therapy and photothermal therapy), and combinational therapy. Conjugation strategies operative through a variety of chemical reactions or physical interactions are also highlighted.

Keywords

  • Aptamer
  • Aptamer–drug conjugates
  • Gold nanoparticles
  • Magnetic nanoparticles
  • Targeted cancer therapy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-46226-3_13
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-46226-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4
Fig. 13.5
Fig. 13.6
Fig. 13.7
Fig. 13.8
Fig. 13.9
Fig. 13.10

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  Google Scholar 

  3. Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nutr Metab 7:7

    Google Scholar 

  4. Wang ZW, Li YW, Ahmad A, Azmi AS, Kong DJ, Banerjee S, Sarkar FH (2010) Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Update 13:109–118

    CAS  Google Scholar 

  5. Xu L (2013) Cancer stem cell in the progression and therapy of pancreatic cancer. Front Biosci-Landmrk 18:795–802

    CAS  Google Scholar 

  6. Haq R, Fisher DE (2011) Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. J Clin Oncol 29:3474–3482

    CAS  Google Scholar 

  7. Kanavos P (2006) The rising burden of cancer in the developing world. Ann Oncol 17:15–23

    Google Scholar 

  8. Siegel R, Ma JM, Zou ZH, Jemal A (2014) Cancer statistics, 2014. Ca-Cancer J Clin 64:9–29

    Google Scholar 

  9. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A (2014) Cancer treatment and survivorship statistics, 2014. Ca-Cancer J Clin 64:252–271

    Google Scholar 

  10. Chabner BA, Roberts TG (2005) Timeline—chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72

    CAS  Google Scholar 

  11. DeVita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68:8643–8653

    CAS  Google Scholar 

  12. Chari RVJ (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107

    CAS  Google Scholar 

  13. Gerber DE (2008) Targeted therapies: a new generation of cancer treatments. Am Fam Phys 77:311–319

    Google Scholar 

  14. Imai K, Takaoka A (2006) Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 6:714–727

    CAS  Google Scholar 

  15. Andre N, Carre M, Pasquier E (2014) Metronomics: towards personalized chemotherapy? Nat Rev Clin Oncol 11:413–431

    CAS  Google Scholar 

  16. Yan L, Hsu K, Beckman RA (2008) Antibody-based therapy for solid tumors. Cancer J 14:178–183

    CAS  Google Scholar 

  17. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    CAS  Google Scholar 

  18. Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14:529–537

    CAS  Google Scholar 

  19. Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29

    CAS  Google Scholar 

  20. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  Google Scholar 

  21. Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW, Mallikaratchy P, Sefah K, Yang CYJ, Tan WH (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. P Natl Acad Sci USA 103:11838–11843

    CAS  Google Scholar 

  22. Sefah K, Shangguan D, Xiong XL, O’Donoghue MB, Tan WH (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169–1185

    CAS  Google Scholar 

  23. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Edit 48:2672–2689

    CAS  Google Scholar 

  24. Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5:2957–2962

    CAS  Google Scholar 

  25. Guo KT, Paul A, Schichor C, Ziemer G, Wendel HP (2008) Cell-SELEX: novel perspectives of aptamer-based therapeutics. Int J Mol Sci 9:668–678

    CAS  Google Scholar 

  26. Fang XH, Tan WH (2010) Aptamers generated from Cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43:48–57

    CAS  Google Scholar 

  27. Sundaram P, Kurniawan H, Byrne ME, Wower J (2013) Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 48:259–271

    CAS  Google Scholar 

  28. Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164

    CAS  Google Scholar 

  29. Huang YF, Shangguan DH, Liu HP, Phillips JA, Zhang XL, Chen Y, Tan WH (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. ChemBioChem 10:862–868

    CAS  Google Scholar 

  30. Tan WH, Wang H, Chen Y, Zhang XB, Zhu HZ, Yang CY, Yang RH, Liu C (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29:634–640

    CAS  Google Scholar 

  31. Huang YF, Kim Y, Meng L, Tan WH (2009) Assembly of aptamer conjugates as molecular tools in therapeutics. Chim Oggi 27:52–54

    Google Scholar 

  32. Wu Z, Tang LJ, Zhang XB, Jiang JH, Tan WH (2011) Aptamer-modified nanodrug delivery systems. Acs NANO 5:7696–7699

    CAS  Google Scholar 

  33. Liu QL, Jin C, Wang YY, Fang XH, Zhang XB, Chen Z, Tan WH (2014) Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. Npg Asia Mater 6:e95

    CAS  Google Scholar 

  34. Chen T, Shukoor MI, Chen Y, Yuan QA, Zhu Z, Zhao ZL, Gulbakan B, Tan WH (2011) Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. Nanoscale 3:546–556

    CAS  Google Scholar 

  35. Yang L, Zhang XB, Ye M, Jiang JH, Yang RH, Fu T, Chen Y, Wang KM, Liu C, Tan WH (2011) Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliver Rev 63:1361–1370

    CAS  Google Scholar 

  36. Kong RM, Zhang XB, Chen Z, Tan WH (2011) Aptamer-assembled nanomaterials for biosensing and biomedical applications. Small 7:2428–2436

    CAS  Google Scholar 

  37. Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G (2013) Nanotechnology in cancer therapy. J Drug Target 21:904–913

    CAS  Google Scholar 

  38. Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    CAS  Google Scholar 

  39. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79

    CAS  Google Scholar 

  40. Kumar A, Zhang X, Liang XJ (2013) Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 31:593–606

    CAS  Google Scholar 

  41. Peng XH, Qian XM, Mao H, Wang AY, Chen Z, Nie SM, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 3:311–321

    CAS  Google Scholar 

  42. Ji SR, Liu C, Zhang B, Yang F, Xu J, Long JA, Jin C, Fu DL, Ni QX, Yu XJ (2010) Carbon nanotubes in cancer diagnosis and therapy. Bba-Rev Cancer 1806:29–35

    CAS  Google Scholar 

  43. Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902

    CAS  Google Scholar 

  44. Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44:68–97

    CAS  Google Scholar 

  45. Blanco E, Kessinger CW, Sumer BD, Gao J (2009) Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med 234:123–131

    CAS  Google Scholar 

  46. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    CAS  Google Scholar 

  47. Jain RK (1994) Barriers to drug-delivery in solid tumors. Sci Am 271:58–65

    CAS  Google Scholar 

  48. Bamrungsap S, Zhao ZL, Chen T, Wang L, Li CM, Fu T, Tan WH (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine-Uk 7:1253–1271

    CAS  Google Scholar 

  49. Berdel WE, Fink U (1984) Cancer-chemotherapy—situation problems, perspectives. Munchen Med Wochen 126:1166–1171

    Google Scholar 

  50. Zhou JH, Rossi JJ (2011) Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides 21:1–10

    Google Scholar 

  51. Shangguan D, Cao ZH, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan WH (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139

    CAS  Google Scholar 

  52. Boyacioglu O, Stuart CH, Kulik G, Gmeiner WH (2013) Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages. Mol Ther-Nucl Acids 2:e107

    Google Scholar 

  53. Perner S, Hofer MD, Kim R, Shah RB, Li HJ, Moller P, Hautmann RE, Gschwend JE, Kuefer R, Rubin MA (2007) Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 38:696–701

    CAS  Google Scholar 

  54. Schulke N, Varlamova OA, Donovan GP, Ma DS, Gardner JP, Morrissey DM, Arrigale RR, Zhan CC, Chodera AJ, Surowitz KG, Maddon PJ, Heston WDW, Olson WC (2003) The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. P Natl Acad Sci USA 100:12590–12595

    Google Scholar 

  55. Aggarwal S, Singh P, Topaloglu O, Isaacs JT, Denmeade SR (2006) A dimeric peptide that binds selectively to prostate-specific membrane antigen and inhibits its enzymatic activity. Cancer Res 66:9171–9177

    CAS  Google Scholar 

  56. Wang RW, Zhu GZ, Mei L, Xie Y, Ma HB, Ye M, Qing FL, Tan WH (2014) Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J Am Chem Soc 136:2731–2734

    CAS  Google Scholar 

  57. Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Edit 45:8149–8152

    CAS  Google Scholar 

  58. Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    CAS  Google Scholar 

  59. Liu Z, Duan JH, Song YM, Ma J, Wang FD, Lu X, Yang XD (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148

    CAS  Google Scholar 

  60. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN (2009) The HER-2 receptor and breast cancer: ten years of targeted Anti-HER-2 therapy and personalized medicine. Oncologist 14:320–368

    CAS  Google Scholar 

  61. Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2009) Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 20:1319–1329

    CAS  Google Scholar 

  62. Shangguan DH, Meng L, Cao ZHC, Xiao ZY, Fang XH, Li Y, Cardona D, Witek RP, Liu C, Tan WH (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80:721–728

    CAS  Google Scholar 

  63. Shangguan DH, Cao ZHC, Li Y, Tan WH (2007) Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem 53:1153–1155

    CAS  Google Scholar 

  64. Zhu GZ, Meng L, Ye M, Yang L, Sefah K, O’Donoghue MB, Chen Y, Xiong XL, Huang J, Song EQ, Tan WH (2012) Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem-Asian J 7:1630–1636

    CAS  Google Scholar 

  65. Zhu GZ, Zheng J, Song EQ, Donovan M, Zhang KJ, Liu C, Tan WH (2013) Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. P Natl Acad Sci USA 110:7998–8003

    CAS  Google Scholar 

  66. Zhang ZQ, Ali MM, Eckert MA, Kang DK, Chen YY, Sender LS, Fruman DA, Zhao WA (2013) A polyvalent aptamer system for targeted drug delivery. Biomaterials 34:9728–9735

    CAS  Google Scholar 

  67. Kim Y, Cao Z, Tan W (2008) Molecular assembly for high-performance bivalent nucleic acid inhibitor. P Natl Acad Sci USA 105:5664–5669

    CAS  Google Scholar 

  68. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer I 90:889–905

    CAS  Google Scholar 

  69. Nseyo UO, DeHaven J, Dougherty TJ, Potter WR, Merrill DL, Lundahl SL, Lamm DL (1998) Photodynamic therapy (PDT) in the treatment of patients with resistant superficial bladder cancer: a long term experience. J Clin Laser Med Sur 16:61–68

    CAS  Google Scholar 

  70. Huang Z (2005) A review of progress in clinical photodynamic therapy. Technol Cancer Res T 4:283–293

    CAS  Google Scholar 

  71. Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109

    CAS  Google Scholar 

  72. Moan J (1990) On the diffusion length of singlet oxygen in cells and tissues. J Photoch Photobio B 6:343–347

    CAS  Google Scholar 

  73. Bugaj AM (2011) Targeted photodynamic therapy—a promising strategy of tumor treatment. Photoch Photobio Sci 10:1097–1109

    CAS  Google Scholar 

  74. Lovell JF, Liu TWB, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110:2839–2857

    CAS  Google Scholar 

  75. Verma S, Watt GM, Mal Z, Hasan T (2007) Strategies for enhanced photodynamic therapy effects. Photochem Photobiol 83:996–1005

    CAS  Google Scholar 

  76. Tang ZW, Shangguan D, Wang KM, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan WH (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79:4900–4907

    CAS  Google Scholar 

  77. Mallikaratchy P, Tang ZW, Tan WH (2008) Cell specific aptamer-photosensitizer conjugates as a molecular tool in photodynamic therapy. ChemMedChem 3:425–428

    CAS  Google Scholar 

  78. Kruspe S, Meyer C, Hahn U (2014) Chlorin e6 conjugated interleukin-6 receptor aptamers selectively kill target cells upon irradiation. Mol Ther-Nucl Acids 3:e143

    CAS  Google Scholar 

  79. Sen D, Gilbert W (1988) Formation of parallel 4-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366

    CAS  Google Scholar 

  80. Ambrus A, Chen D, Dai JX, Bialis T, Jones RA, Yang DZ (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    CAS  Google Scholar 

  81. Evans T, Schon E, Goramaslak G, Patterson J, Efstratiadis A (1984) S1-hypersensitive sites in eukaryotic promoter regions. Nucleic Acids Res 12:8043–8058

    CAS  Google Scholar 

  82. Granotier C, Pennarun G, Riou L, Hoffschir F, Gauthier LR, De Cian A, Gomez D, Mandine E, Riou JF, Mergny JL, Mailliet P, Dutrillaux B, Boussin FD (2005) Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acids Res 33:4182–4190

    CAS  Google Scholar 

  83. Zahler AM, Williamson JR, Cech TR, Prescott DM (1991) Inhibition of telomerase by G-quartet DNA structures. Nature 350:718–720

    CAS  Google Scholar 

  84. Rha SY, Izbicka E, Lawrence R, Davidson K, Sun DK, Moyer MP, Roodman GD, Hurley L, Von Hoff D (2000) Effect of telomere and telomerase interactive agents on human tumor and normal cell lines. Clin Cancer Res 6:987–993

    CAS  Google Scholar 

  85. Shieh YA, Yang SJ, Wei MF, Shieh MJ (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–1442

    CAS  Google Scholar 

  86. Wang KL, You MX, Chen Y, Han D, Zhu Z, Huang J, Williams K, Yang CJ, Tan WH (2011) Self-assembly of a bifunctional DNA carrier for drug delivery. Angew Chem Int Edit 50:6098–6101

    CAS  Google Scholar 

  87. Zheng G, Chen J, Stefflova K, Jarvi M, Li H, Wilson BC (2007) Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. P Natl Acad Sci USA 104:8989–8994

    CAS  Google Scholar 

  88. Tang ZW, Zhu Z, Mallikaratchy P, Yang RH, Sefah K, Tan WH (2010) Aptamer-target binding triggered molecular mediation of singlet oxygen generation. Chem-Asian J 5:783–786

    CAS  Google Scholar 

  89. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. P Natl Acad Sci USA 101:15275–15278

    CAS  Google Scholar 

  90. Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–1125

    CAS  Google Scholar 

  91. Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322

    CAS  Google Scholar 

  92. Han D, Zhu GZ, Wu CC, Zhu Z, Chen T, Zhang XB, Tan WH (2013) Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. ACS Nano 7:2312–2319

    CAS  Google Scholar 

  93. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  Google Scholar 

  94. Hakkinen H (2012) The gold-sulfur interface at the nanoscale. Nat Chem 4:443–455

    Google Scholar 

  95. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347

    CAS  Google Scholar 

  96. Boca SC, Astilean S (2010) Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Nanotechnology 21:235601

    Google Scholar 

  97. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333

    CAS  Google Scholar 

  98. Gerber A, Bundschuh M, Klingelhofer D, Groneberg DA (2013) Gold nanoparticles: recent aspects for human toxicology. J Occup Med Toxicol 8:32

    Google Scholar 

  99. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    CAS  Google Scholar 

  100. Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B 110:19935–19944

    CAS  Google Scholar 

  101. Skrabalak SE, Chen JY, Sun YG, Lu XM, Au L, Cobley CM, Xia YN (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595

    CAS  Google Scholar 

  102. Huang XH, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    CAS  Google Scholar 

  103. Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD, Marquez M, Xia YN (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    CAS  Google Scholar 

  104. Schoen PAE, Walther JH, Poulikakos D, Koumoutsakos P (2007) Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes. Appl Phys Lett 90:253116

    Google Scholar 

  105. Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J, Hatcher HC, Torti SV, Rylander CG, Rylander MN (2010) Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 70:9855–9864

    CAS  Google Scholar 

  106. Dickerson EB, Dreaden EC, Huang XH, El-Sayed IH, Chu HH, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66

    CAS  Google Scholar 

  107. Choi WI, Kim JY, Kang C, Byeon CC, Kim YH, Tee G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003

    CAS  Google Scholar 

  108. Huang YF, Sefah K, Bamrungsap S, Chang HT, Tan W (2008) Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 24:11860–11865

    CAS  Google Scholar 

  109. Huang YF, Chang HT, Tan WH (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80:567–572

    CAS  Google Scholar 

  110. Wang J, Sefah K, Altman MB, Chen T, You MX, Zhao ZL, Huang CZ, Tan WH (2013) Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells. Chem-Asian J 8:2417–2422

    CAS  Google Scholar 

  111. Yang HW, Lu YJ, Lin KJ, Hsu SC, Huang CY, She SH, Liu HL, Lin CW, Xiao MC, Wey SP, Chen PY, Yen TC, Wei KC, Ma CCM (2013) EGRF conjugated PEGylated nanographene oxide for targeted chemotherapy and photothermal therapy. Biomaterials 34:7204–7214

    CAS  Google Scholar 

  112. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149:65–71

    CAS  Google Scholar 

  113. Hegyi G, Szigeti GP, Szasz A (2013) Hyperthermia versus oncothermia: cellular effects in complementary cancer therapy. Evid-Based Compl Alt 2013:672873

    Google Scholar 

  114. You J, Zhang GD, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4:1033–1041

    CAS  Google Scholar 

  115. Zhao NX, You J, Zeng ZH, Li C, Zu YL (2013) An ultra pH-sensitive and aptamer-equipped nanoscale drug-delivery system for selective killing of tumor cells. Small 9:3477–3484

    CAS  Google Scholar 

  116. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    CAS  Google Scholar 

  117. Marsh TC, Vesenka J, Henderson E (1995) A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. Nucleic Acids Res 23:696–700

    CAS  Google Scholar 

  118. Yang XJ, Liu X, Liu Z, Pu F, Ren JS, Qu XG (2012) Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv Mater 24:2890–2895

    CAS  Google Scholar 

  119. Luo YL, Shiao YS, Huang YF (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5:7796–7804

    CAS  Google Scholar 

  120. Kang HZ, Trondoli AC, Zhu GZ, Chen Y, Chang YJ, Liu HP, Huang YF, Zhang XL, Tan WH (2011) Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5:5094–5099

    CAS  Google Scholar 

  121. Jang B, Park JY, Tung CH, Kim IH, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094

    CAS  Google Scholar 

  122. Kuo WS, Chang CN, Chang YT, Yang MH, Chien YH, Chen SJ, Yeh CS (2010) Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew Chem Int Edit 49:2711–2715

    CAS  Google Scholar 

  123. Dulkeith E, Ringler M, Klar TA, Feldmann J, Javier AM, Parak WJ (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5:585–589

    CAS  Google Scholar 

  124. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    CAS  Google Scholar 

  125. Griffin J, Singh AK, Senapati D, Rhodes P, Mitchell K, Robinson B, Yu E, Ray PC (2009) Size- and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of Hepatitis C Virus RNA. Chem-Eur J 15:342–351

    CAS  Google Scholar 

  126. Wang J, Zhu GZ, You MX, Song EQ, Shukoor MI, Zhang KJ, Altman MB, Chen Y, Zhu Z, Huang CZ, Tan WH (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6:5070–5077

    CAS  Google Scholar 

  127. Poon L, Zandberg W, Hsiao D, Erno Z, Sen D, Gates BD, Branda NR (2010) Photothermal release of single-stranded DNA from the surface of gold nanoparticles through controlled denaturating and Au–S bond breaking. ACS Nano 4:6395–6403

    CAS  Google Scholar 

  128. Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672

    CAS  Google Scholar 

  129. Yin ML, Li ZH, Liu Z, Ren JS, Yang XJ, Qu XG (2012) Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Chem Commun 48:6556–6558

    CAS  Google Scholar 

  130. Natterer F, Ritman EL (2002) Past and future directions in X-ray computed tomography (CT). Int J Imag Syst Tech 12:175–187

    Google Scholar 

  131. Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J Am Chem Soc 129:7661–7665

    CAS  Google Scholar 

  132. Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum Arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3:333–341

    CAS  Google Scholar 

  133. Alric C, Taleb J, Le Duc G, Mandon C, Billotey C, Le Meur-Herland A, Brochard T, Vocanson F, Janier M, Perriat P, Roux S, Tillement O (2008) Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–5915

    CAS  Google Scholar 

  134. Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696

    CAS  Google Scholar 

  135. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    CAS  Google Scholar 

  136. Munowitz M, Pines A (1987) Principles and applications of multiple-quantum NMR. Adv Chem Phys 66:1–152

    CAS  Google Scholar 

  137. Pan DPJ, Schmieder AH, Wickline SA, Lanza GM (2011) Manganese-based MRI contrast agents: past, present, and future. Tetrahedron 67:8431–8444

    CAS  Google Scholar 

  138. Li CM, Chen T, Ocsoy I, Zhu GZ, Yasun E, You MX, Wu CC, Zheng J, Song EQ, Huang CZ, Tan WH (2014) Gold-coated Fe3O4 nanoroses with five unique functions for cancer cell targeting, imaging, and therapy. Adv Funct Mater 24:1772–1780

    CAS  Google Scholar 

  139. Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334

    CAS  Google Scholar 

  140. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338

    CAS  Google Scholar 

  141. Shubayev VI, Pisanic TR, Jin SH (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477

    CAS  Google Scholar 

  142. Sun C, Lee JSH, Zhang MQ (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    CAS  Google Scholar 

  143. Jun YW, Seo JW, Cheon A (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189

    CAS  Google Scholar 

  144. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    CAS  Google Scholar 

  145. Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596

    CAS  Google Scholar 

  146. Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    CAS  Google Scholar 

  147. Zhao FY, Zhang BL, Feng LY (2012) Preparation and magnetic properties of magnetite nanoparticles. Mater Lett 68:112–114

    CAS  Google Scholar 

  148. Wu W, He QG, Jiang CZ (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    CAS  Google Scholar 

  149. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    CAS  Google Scholar 

  150. Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, Shaikh M, Yuet K, Cima MJ, Langer R, Kantoff PW, Bander NH, Jon SY, Farokhzad OC (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3:1311–1315

    CAS  Google Scholar 

  151. Jalalian SH, Taghdisi SM, Hamedani NS, Kalat SAM, Lavaee P, ZandKarimi M, Ghows N, Jaafari MR, Naghibi S, Danesh NM, Ramezani M, Abnous K (2013) Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci 50:191–197

    CAS  Google Scholar 

  152. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–2249

    CAS  Google Scholar 

  153. Zheng J, Zhu GZ, Li YH, Li CM, You MX, Chen T, Song EQ, Yang RH, Tan WH (2013) A spherical nucleic acid platform based on self-assembled DNA biopolymer for high-performance cancer therapy. ACS Nano 7:6545–6554

    CAS  Google Scholar 

  154. Cheng K, Peng S, Xu CJ, Sun SH (2009) Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc 131:10637–10644

    CAS  Google Scholar 

  155. Chen T, Shukoor MI, Wang RW, Zhao ZL, Yuan Q, Bamrungsap S, Xiong XL, Tan WH (2011) Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5:7866–7873

    CAS  Google Scholar 

  156. Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808

    CAS  Google Scholar 

  157. Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix LM, Gougeon M, Chaudret B, Respaud M (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Funct Mater 21:4573–4581

    CAS  Google Scholar 

  158. Johannsen M, Gneueckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1662

    Google Scholar 

  159. Pala K, Serwotka A, Jelen F, Jakimowicz P, Otlewski J (2014) Tumor-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int J Nanomed 9:67–76

    Google Scholar 

  160. Nair BG, Nagaoka Y, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2010) Aptamer conjugated magnetic nanoparticles as nanosurgeons. Nanotechnology 21:455102

    Google Scholar 

  161. Aravind A, Nair R, Raveendran S, Veeranarayanan S, Nagaoka Y, Fukuda T, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2013) Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy. J Magn Magn Mater 344:116–123

    CAS  Google Scholar 

  162. Dunne M, Corrigan OI, Ramtoola Z (2000) Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21:1659–1668

    CAS  Google Scholar 

  163. Grayson ACR, Cima MJ, Langer R (2005) Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials 26:2137–2145

    CAS  Google Scholar 

  164. Koziara JM, Lockman PR, Allen DD, Mumper RJ (2004) Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 99:259–269

    CAS  Google Scholar 

  165. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    CAS  Google Scholar 

  166. Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Madiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, VanHoff DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413

    CAS  Google Scholar 

  167. Sivakumar B, Aswathy RG, Nagaoka Y, Iwai S, Venugopal K, Kato K, Yoshida Y, Maekawa T, Kumar DNS (2013) Aptamer conjugated theragnostic multifunctional magnetic nanoparticles as a nanoplatform for pancreatic cancer therapy. RSC Adv 3:20579–20598

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Tsing Hua University (101N7046E1), the Ministry of Science and Technology (NSC 102-2113-M-007-005-MY3, NSC 102-2627-M-007-004), and the postdoctoral fund of Ministry of Science and Technology (MOST 103-2811-M-007-039) of Taiwan, ROC. Dr. He also thanks the National Natural Science Foundation of China (21405125) and the Fundamental Research Funds for the Central Universities (no. SWU113099) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Fen Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, Y., del Valle, A., Huang, YF. (2015). Cell-Specific Aptamers for Targeted Therapy. In: Tan, W., Fang, X. (eds) Aptamers Selected by Cell-SELEX for Theranostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46226-3_13

Download citation