Discovery of Biomarkers Using Aptamers Evolved in Cell-SELEX Method

  • Prabodhika MallikaratchyEmail author
  • Hasan Zumrut
  • Naznin Ara


The knowledge of biomarkers relevant to diseases has a significant impact on the diagnosis, the prognosis, and the fundamental understanding of the disease. In the context of biomarker discovery in cell-SELEX, the definition of a biomarker referred to a molecular entity overly expressed in an immortalized cell line in which the origin of this cell is a diseased patient. This chapter focuses on an extensive discussion on how biomarkers can be discovered using aptamers evolved from cell-SELEX technology, with a particular emphasis on the systematic steps needs to follow to discover a biomarker. A comparison is made underlining current challenges of existing “omic”-based technologies of biomarker discovery. The utility of chemical versatility of aptamers in transforming aptamers evolved from cell-SELEX as a proteomic tool is discussed. Feasibility of post-proteomic target validation studies employing variety of biochemical techniques is highlighted with selected examples. The significant progress of aptamer-aided biomarker discovery is emphasized with six examples of aptamer-based biomarker discovery leading to the identification of novel marker or already established biomarker molecules. Chapter concludes with a discussion on current challenges that hinders the success of the field of aptamer-based biomarker discovery, and a discussion with potential solutions that could accelerate the progress of the field.


Aptamer-based biomarker discovery Cell-SELEX Proteomics Flow cytometry Chemical cross-linking Protein tyrosine kinase 7 (PTK-7) Immunoglobin heavy membrane (IGHM) Stress-induced phosphoprotein 1 (STIP1) Hemagglutinin (HA) Sialic acid-binding Ig-like lectin (Siglec-5) 


  1. 1.
    Strimbu K, Tavel JA (2010) What are biomarkers? Current opinion in HIV and AIDS 5(6):463–466. doi: 10.1097/COH.0b013e32833ed177 CrossRefGoogle Scholar
  2. 2.
    Henry NL, Hayes DF (2012) Cancer biomarkers. Molecular oncology 6(2):140–146. doi: 10.1016/j.molonc.2012.01.010 CrossRefGoogle Scholar
  3. 3.
    Frangogiannis NG (2012) Biomarkers: hopes and challenges in the path from discovery to clinical practice. Translational research : the journal of laboratory and clinical medicine 159(4):197–204. doi: 10.1016/j.trsl.2012.01.023 CrossRefGoogle Scholar
  4. 4.
    Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856. doi: 10.1038/nrc1739 CrossRefGoogle Scholar
  5. 5.
    Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L (2003) The case for early detection. Nat Rev Cancer 3(4):243–252. doi: 10.1038/nrc1041 CrossRefGoogle Scholar
  6. 6.
    Lin K, Lipsitz R, Miller T, Janakiraman S, Force USPST (2008) Benefits and harms of prostate-specific antigen screening for prostate cancer: an evidence update for the U.S. Preventive Services Task Force. Ann Intern Med 149(3):192–199CrossRefGoogle Scholar
  7. 7.
    Health Quality O (2007) Screening mammography for women aged 40 to 49 years at average risk for breast cancer: an evidence-based analysis. Ontario health technology assessment series 7(1):1–32Google Scholar
  8. 8.
    Babuin L, Jaffe AS (2005) Troponin: the biomarker of choice for the detection of cardiac injury. CMAJ : Canadian Medical Association journal = journal de l’Association medicale canadienne 173 (10):1191-1202. doi: 10.1503/cmaj/051291 Google Scholar
  9. 9.
    Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113(19):2335–2362. doi: 10.1161/CIRCULATIONAHA.104.482570 CrossRefGoogle Scholar
  10. 10.
    Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250(4988):1684–1689CrossRefGoogle Scholar
  11. 11.
    Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet 56(1):265–271Google Scholar
  12. 12.
    Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57. doi: 10.1021/ar900101s CrossRefGoogle Scholar
  13. 13.
    Tang Z, Parekh P, Turner P, Moyer RW, Tan W (2009) Generating aptamers for recognition of virus-infected cells. Clin Chem 55(4):813–822. doi: 10.1373/clinchem.2008.113514 CrossRefGoogle Scholar
  14. 14.
    Ilyin SE, Belkowski SM, Plata-Salaman CR (2004) Biomarker discovery and validation: technologies and integrative approaches. Trends Biotechnol 22(8):411–416. doi: 10.1016/j.tibtech.2004.06.005 CrossRefGoogle Scholar
  15. 15.
    Welsh JB, Zarrinkar PP, Sapinoso LM, Kern SG, Behling CA, Monk BJ, Lockhart DJ, Burger RA, Hampton GM (2001) Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America 98 (3):1176-1181. doi: 10.1073/pnas.98.3.1176 Google Scholar
  16. 16.
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487CrossRefGoogle Scholar
  17. 17.
    Ewing B, Green P (2000) Analysis of expressed sequence tags indicates 35,000 human genes. Nat Genet 25(2):232–234. doi: 10.1038/76115 CrossRefGoogle Scholar
  18. 18.
    Brinkman BM (2004) Splice variants as cancer biomarkers. Clin Biochem 37(7):584–594. doi: 10.1016/j.clinbiochem.2004.05.015 CrossRefGoogle Scholar
  19. 19.
    Scott A, Ambannavar R, Jeong J, Liu ML, Cronin MT (2011) RT-PCR-based gene expression profiling for cancer biomarker discovery from fixed, paraffin-embedded tissues. Methods Mol Biol 724:239–257. doi: 10.1007/978-1-61779-055-3_15 CrossRefGoogle Scholar
  20. 20.
    Evans CW, Wilson DA, Mills GN (2001) Quantitative competitive (qc) RT-PCR as a tool in biomarker analysis. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals 6(1):7–14. doi: 10.1080/135475001452733 CrossRefGoogle Scholar
  21. 21.
    Stenvinkel P, Karimi M, Johansson S, Axelsson J, Suliman M, Lindholm B, Heimburger O, Barany P, Alvestrand A, Nordfors L, Qureshi AR, Ekstrom TJ, Schalling M (2007) Impact of inflammation on epigenetic DNA methylation - a novel risk factor for cardiovascular disease? J Intern Med 261(5):488–499. doi: 10.1111/j.1365-2796.2007.01777.x CrossRefGoogle Scholar
  22. 22.
    Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21(6):1037–1053. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1037:AID-ELPS1037>3.0.CO;2-V CrossRefGoogle Scholar
  23. 23.
    Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Proteomic applications for the early detection of cancer. Nat Rev Cancer 3(4):267–275. doi: 10.1038/nrc1043 CrossRefGoogle Scholar
  24. 24.
    Tannu NS, Hemby SE (2006) Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 1(4):1732–1742. doi: 10.1038/nprot.2006.256 CrossRefGoogle Scholar
  25. 25.
    Jain KK (2010) The handbook of biomarkers. Springer, New YorkCrossRefGoogle Scholar
  26. 26.
    Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983. doi: 10.1038/nbt1235 CrossRefGoogle Scholar
  27. 27.
    Reyzer ML, Caprioli RM (2005) MALDI mass spectrometry for direct tissue analysis: a new tool for biomarker discovery. J Proteome Res 4(4):1138–1142. doi: 10.1021/pr050095+ CrossRefGoogle Scholar
  28. 28.
    Issaq HJ, Veenstra TD, Conrads TP, Felschow D (2002) The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochemical and biophysical research communications 292(3):587–592. doi: 10.1006/bbrc.2002.6678 CrossRefGoogle Scholar
  29. 29.
    Chaurand P, Sanders ME, Jensen RA, Caprioli RM (2004) Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am J Pathol 165(4):1057–1068. doi: 10.1016/S0002-9440(10)63367-6 CrossRefGoogle Scholar
  30. 30.
    Paweletz CP, Trock B, Pennanen M, Tsangaris T, Magnant C, Liotta LA, Petricoin EF 3rd (2001) Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis Markers 17(4):301–307CrossRefGoogle Scholar
  31. 31.
    Robosky LC, Robertson DG, Baker JD, Rane S, Reily MD (2002) In vivo toxicity screening programs using metabonomics. Comb Chem High Throughput Screening 5(8):651–662CrossRefGoogle Scholar
  32. 32.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510CrossRefGoogle Scholar
  33. 33.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi: 10.1038/346818a0 CrossRefGoogle Scholar
  34. 34.
    Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650Google Scholar
  35. 35.
    Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proceedings of the National Academy of Sciences of the United States of America 103 (32):11838-11843. doi: 10.1073/pnas.0602615103 Google Scholar
  36. 36.
    Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D, Li Y, Parekh P, Martin J, Meng L, Phillips JA, Kim YM, Tan WH (2009) Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 23(2):235–244. doi: 10.1038/leu.2008.335 CrossRefGoogle Scholar
  37. 37.
    Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan W (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79(13):4900–4907. doi: 10.1021/ac070189y CrossRefGoogle Scholar
  38. 38.
    Ballew JT, Murray JA, Collin P, Maki M, Kagnoff MF, Kaukinen K, Daugherty PS (2013) Antibody biomarker discovery through in vitro directed evolution of consensus recognition epitopes. Proceedings of the National Academy of Sciences of the United States of America 110 (48):19330-19335. doi: 10.1073/pnas.1314792110 Google Scholar
  39. 39.
    Chang YM, Donovan MJ, Tan W (2013) Using aptamers for cancer biomarker discovery. Journal of nucleic acids 2013:817350. doi: 10.1155/2013/817350 CrossRefGoogle Scholar
  40. 40.
    Bunka DH, Stockley PG (2006) Aptamers come of age - at last. Nat Rev Microbiol 4(8):588–596. doi: 10.1038/nrmicro1458 CrossRefGoogle Scholar
  41. 41.
    Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5(12):e15004. doi: 10.1371/journal.pone.0015004 CrossRefGoogle Scholar
  42. 42.
    Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Molecular & cellular proteomics : MCP 6(12):2230–2238. doi: 10.1074/mcp.M700026-MCP200 CrossRefGoogle Scholar
  43. 43.
    Van Simaeys D, Turek D, Champanhac C, Vaizer J, Sefah K, Zhen J, Sutphen R, Tan W (2014) Identification of cell membrane protein stress-induced phosphoprotein 1 as a potential ovarian cancer biomarker using aptamers selected by cell systematic evolution of ligands by exponential enrichment. Anal Chem 86(9):4521–4527. doi: 10.1021/ac500466x CrossRefGoogle Scholar
  44. 44.
    Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7(5):2133–2139. doi: 10.1021/pr700894d CrossRefGoogle Scholar
  45. 45.
    Yang M, Jiang G, Li W, Qiu K, Zhang M, Carter CM, Al-Quran SZ, Li Y (2014) Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. Journal of hematology & oncology 7(1):5. doi: 10.1186/1756-8722-7-5 CrossRefGoogle Scholar
  46. 46.
    Ara MN, Hyodo M, Ohga N, Akiyama K, Hida K, Hida Y, Shinohara N, Harashima H (2014) Identification and expression of troponin T, a new marker on the surface of cultured tumor endothelial cells by aptamer ligand. Cancer medicine 3(4):825–834. doi: 10.1002/cam4.260 CrossRefGoogle Scholar
  47. 47.
    Parekh P, Tang Z, Turner PC, Moyer RW, Tan W (2010) Aptamers recognizing glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal Chem 82(20):8642–8649. doi: 10.1021/ac101801j CrossRefGoogle Scholar
  48. 48.
    Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113(4):2842–2862. doi: 10.1021/cr300468w CrossRefGoogle Scholar
  49. 49.
    Shangguan D, Cao ZC, Li Y, Tan W (2007) Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem 53(6):1153–1155. doi: 10.1373/clinchem.2006.083246 CrossRefGoogle Scholar
  50. 50.
    Xiao Z, Shangguan D, Cao Z, Fang X, Tan W (2008) Cell-specific internalization study of an aptamer from whole cell selection. Chemistry 14(6):1769–1775. doi: 10.1002/chem.200701330 CrossRefGoogle Scholar
  51. 51.
    Easty DJ, Mitchell PJ, Patel K, Florenes VA, Spritz RA, Bennett DC (1997) Loss of expression of receptor tyrosine kinase family genes PTK7 and SEK in metastatic melanoma. International journal of cancer Journal international du cancer 71(6):1061–1065CrossRefGoogle Scholar
  52. 52.
    Cambier JC, Campbell KS (1992) Membrane immunoglobulin and its accomplices: new lessons from an old receptor. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 6(13):3207–3217Google Scholar
  53. 53.
    Adams MM, Rice AD, Moyer RW (2007) Rabbitpox virus and vaccinia virus infection of rabbits as a model for human smallpox. J Virol 81(20):11084–11095. doi: 10.1128/JVI.00423-07 CrossRefGoogle Scholar
  54. 54.
    Shida H, Dales S (1981) Biogenesis of vaccinia: carbohydrate of the hemagglutinin molecules. Virology 111(1):56–72CrossRefGoogle Scholar
  55. 55.
    Van Simaeys D, Lopez-Colon D, Sefah K, Sutphen R, Jimenez E, Tan W (2010) Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX. PLoS ONE 5(11):e13770. doi: 10.1371/journal.pone.0013770 CrossRefGoogle Scholar
  56. 56.
    Walsh N, Larkin A, Swan N, Conlon K, Dowling P, McDermott R, Clynes M (2011) RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Lett 306(2):180–189. doi: 10.1016/j.canlet.2011.03.004 CrossRefGoogle Scholar
  57. 57.
    Wang TH, Chao A, Tsai CL, Chang CL, Chen SH, Lee YS, Chen JK, Lin YJ, Chang PY, Wang CJ, Chao AS, Chang SD, Chang TC, Lai CH, Wang HS (2010) Stress-induced phosphoprotein 1 as a secreted biomarker for human ovarian cancer promotes cancer cell proliferation. Molecular & cellular proteomics : MCP 9(9):1873–1884. doi: 10.1074/mcp.M110.000802 CrossRefGoogle Scholar
  58. 58.
    Ara MN, Hyodo M, Ohga N, Hida K, Harashima H (2012) Development of a novel DNA aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based SELEX method. PLoS ONE 7(12):e50174. doi: 10.1371/journal.pone.0050174 CrossRefGoogle Scholar
  59. 59.
    Ara MN, Matsuda T, Hyodo M, Sakurai Y, Hatakeyama H, Ohga N, Hida K, Harashima H (2014) An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials 35(25):7110–7120. doi: 10.1016/j.biomaterials.2014.04.087 CrossRefGoogle Scholar
  60. 60.
    Risnik VV, Verin AD, Gusev NB (1985) Comparison of the structure of two cardiac troponin T isoforms. Biochem J 225(2):549–552Google Scholar
  61. 61.
    Virgo P, Denning-Kendall PA, Erickson-Miller CL, Singha S, Evely R, Hows JM, Freeman SD (2003) Identification of the CD33-related Siglec receptor, Siglec-5 (CD170), as a useful marker in both normal myelopoiesis and acute myeloid leukaemias. Br J Haematol 123(3):420–430CrossRefGoogle Scholar
  62. 62.
    Mayer G, Ahmed MS, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc 5(12):1993–2004. doi: 10.1038/nprot.2010.163 CrossRefGoogle Scholar
  63. 63.
    Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, Chen Y, Wang K, Liu C, Tan W (2011) Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev 63(14–15):1361–1370. doi: 10.1016/j.addr.2011.10.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Prabodhika Mallikaratchy
    • 1
    Email author
  • Hasan Zumrut
    • 1
  • Naznin Ara
    • 1
  1. 1.Department of ChemistryLehman College-City University of New YorkBronxUSA

Personalised recommendations