Cell-Specific Aptamers for Molecular Imaging

  • Jing ZhengEmail author
  • Chunmei Li
  • Ronghua YangEmail author


Aptamers, single-stranded oligonucleotides, are an important class of molecular targeting ligands. Since their discovery, aptamers have been rapidly translated into bioanalytical practice. They have been approved as molecular imaging and therapeutics tools. Aptamers also possess several properties that make them uniquely suited to molecular imaging. This chapter aims to provide a summary of aptamers’ advantages as targeting ligands and their applications in molecular imaging.


Aptamer Molecular imaging Optical imaging Nanomaterials MRI imaging 


  1. 1.
    Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333Google Scholar
  2. 2.
    Thakur M, Lentle BC (2005) Report of a summit on molecular imaging. Radiology 236:753–755Google Scholar
  3. 3.
    Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672Google Scholar
  4. 4.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822Google Scholar
  5. 5.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510Google Scholar
  6. 6.
    Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA 100:15416–15421Google Scholar
  7. 7.
    Tavitian B, Terrazzino S, Kuhnast B, Marzabal S, Stettler O, Dolle F, Deverre JB, Jobert A, Hinnen F, Bendriem B, Crouzel C, Di Giamberardino L (1998) In vivo imaging of oligonucleotides with positron emission tomography. Nat Med 4:467–471Google Scholar
  8. 8.
    Schmidt KS, Borkowski S, Kurreck J, Stephens AW, Bald R, Hecht M, Friebe M, Dinkelborg L, Erdmann VA (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32:5757–5765Google Scholar
  9. 9.
    Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43:48–57Google Scholar
  10. 10.
    Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113:2842–2862Google Scholar
  11. 11.
    Amer M (2009) Wiley, HobokenGoogle Scholar
  12. 12.
    Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2009) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640Google Scholar
  13. 13.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotech 14:303–308Google Scholar
  14. 14.
    Tan WH, Wang KM, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8:547–553Google Scholar
  15. 15.
    Stojanovic MN, de Prada P, Landry DW (2000) Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc 122:11547–11548Google Scholar
  16. 16.
    Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan WH (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci USA 102:17278–17283Google Scholar
  17. 17.
    Qiu L, Wu C, You M, Han D, Chen T, Zhu G, Jiang J, Yu R, Tan W (2013) A targeted, self-delivered, and photocontrolled molecular beacon for mRNA detection in living cells. J Am Chem Soc 135:12952–12955Google Scholar
  18. 18.
    Shi H, He XX, Wang KM, Wu X, Ye XS, Guo QP, Tan WH, Qing ZH, Yang XH, Zhou B (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci USA 108:3900–3905Google Scholar
  19. 19.
    Shi H, He X, Cui W, Wang K, Deng K, Li D, Xu F (2014) Locked nucleic acid/DNA chimeric aptamer probe for tumor diagnosis with improved serum stability and extended imaging window in vivo. Anal Chim Acta 812:138–144Google Scholar
  20. 20.
    Banerjee S, Wong SS (2002) Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Lett 2:195–200Google Scholar
  21. 21.
    Lue JT (2001) A review of characterization and physical property studies of metallic nanoparticles. J Phys Chem Solids 62:1599–1612Google Scholar
  22. 22.
    Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288Google Scholar
  23. 23.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346Google Scholar
  24. 24.
    Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030Google Scholar
  25. 25.
    Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908Google Scholar
  26. 26.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650Google Scholar
  27. 27.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081Google Scholar
  28. 28.
    Wang Y, Li D, Ren W, Liu Z, Dong S, Wang E (2008) Ultrasensitive colorimetric detection of protein by aptamer—Au nanoparticles conjugates based on a dot-blot assay. Chem Commun 2520–2522Google Scholar
  29. 29.
    Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80:1067–1072Google Scholar
  30. 30.
    Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45:90–94Google Scholar
  31. 31.
    Huang Y-F, Chang H-T, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80:567–572Google Scholar
  32. 32.
    Wang H-H, Lin C-AJ, Lee C-H, Lin Y-C, Tseng Y-M, Hsieh C-L, Chen C-H, Tsai C-H, Hsieh C-T, Shen J-L, Chan W-H, Chang WH, Yeh H-I (2011) Fluorescent gold nanoclusters as a biocompatible marker for in vitro and in vivo tracking of endothelial cells. ACS Nano 5:4337–4344Google Scholar
  33. 33.
    Wang Y, Chen J, Irudayaraj J (2011) Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2(+) breast cancer. ACS Nano 5:9718–9725Google Scholar
  34. 34.
    Vosch T, Antoku Y, Hsiang J-C, Richards CI, Gonzalez JI, Dickson RM (2007) Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc Natl Acad Sci USA 104:12616–12621Google Scholar
  35. 35.
    de Souza N (2007) All that glitters but does not blink. Nat Meth 4:540Google Scholar
  36. 36.
    Li J, Zhong X, Cheng F, Zhang J-R, Jiang L-P, Zhu J-J (2012) One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging. Anal Chem 84:4140–4146Google Scholar
  37. 37.
    Yin J, He X, Wang K, Qing Z, Wu X, Shi H, Yang X (2012) One-step engineering of silver nanoclusters-aptamer assemblies as luminescent labels to target tumor cells. Nanoscale 4:110–112Google Scholar
  38. 38.
    Schluecker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10:1344–1354Google Scholar
  39. 39.
    Jarvis RM, Goodacre R (2008) Characterisation and identification of bacteria using SERS. Chem Soc Rev 37:931–936Google Scholar
  40. 40.
    Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920Google Scholar
  41. 41.
    Lu W, Singh AK, Khan SA, Senapati D, Yu H, Ray PC (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced raman spectroscopy. J Am Chem Soc 132:18103–18114Google Scholar
  42. 42.
    Beqa L, Fan Z, Singh AK, Senapati D, Ray PC (2011) Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. Acs Appl Mater Inter 3:3316–3324Google Scholar
  43. 43.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286Google Scholar
  44. 44.
    Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307Google Scholar
  45. 45.
    Wu Y, Phillips JA, Liu H, Yang R, Tan W (2008) Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2:2023–2028Google Scholar
  46. 46.
    Lu C-H, Li J, Lin M-H, Wang Y-W, Yang H-H, Chen X, Chen G-N (2010) Amplified aptamer-based assay through catalytic recycling of the analyte. Angew Chem Int Ed 49:8454–8457Google Scholar
  47. 47.
    Wang Y, Li Z, Hu D, Lin C-T, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274–9276Google Scholar
  48. 48.
    Tan XH, Chen T, Xiong XL, Mao Y, Zhu GZ, Yasun E, Li CM, Zhu Z, Tan WH (2012) Semiquantification of ATP in live cells using nonspecific desorption of DNA from graphene oxide as the internal reference. Anal Chem 84:8622–8627Google Scholar
  49. 49.
    Yi M, Yang S, Peng Z, Liu C, Li J, Zhong W, Yang R, Tan W (2014) Two-photon graphene oxide/aptamer nanosensing conjugate for in vitro or in vivo molecular probing. Anal Chem 86:3548–3554Google Scholar
  50. 50.
    Wu CC, Chen T, Han D, You MX, Peng L, Cansiz S, Zhu GZ, Li CM, Xiong XL, Jimenez E, Yang CJ, Tan WH (2013) Engineering of switchable aptamer micelle flares for molecular imaging in living cells. ACS Nano 7:5724–5731Google Scholar
  51. 51.
    Chen T, Wu CS, Jimenez E, Zhu Z, Dajac JG, You M, Han D, Zhang X, Tan W (2013) DNA micelle flares for intracellular mRNA imaging and gene therapy. Angew Chem Int Ed 52:2012–2016Google Scholar
  52. 52.
    Zhu G, Zhang S, Song E, Zheng J, Hu R, Fang X, Tan W (2013) Building fluorescent DNA nanodevices on target living cell surfaces. Angew Chem Int Ed 52:5490–5496Google Scholar
  53. 53.
    Hu R, Zhang X, Zhao Z, Zhu G, Chen T, Fu T, Tan W (2014) DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem-Int Ed 53:5821–5826Google Scholar
  54. 54.
    Wang K, He X, Yang X, Shi H (2013) Functionalized silica nanoparticles: A platform for fluorescence imaging at the cell and small animal levels. Acc Chem Res 46:1367–1376Google Scholar
  55. 55.
    Estevez MC, O’Donoghue MB, Chen X, Tan W (2009) Highly fluorescent dye-doped silica nanoparticles increase flow cytometry sensitivity for cancer cell monitoring. Nano Res 2:448–461Google Scholar
  56. 56.
    Chen X, Estévez MC, Zhu Z, Huang Y-F, Chen Y, Wang L, Tan W (2009) Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem 81:7009–7014Google Scholar
  57. 57.
    Medley CD, Bamrungsap S, Tan W, Smith JE (2011) Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 83:727–734Google Scholar
  58. 58.
    Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 14:582–596Google Scholar
  59. 59.
    Cheng L, Wang C, Liu Z (2013) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5:23–37Google Scholar
  60. 60.
    Shen J, Zhao L, Han G (2013) Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv Drug Deliv Rev 65:744–755Google Scholar
  61. 61.
    Wang J, Wei T, Li X, Zhang B, Wang J, Huang C, Yuan Q (2014) Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. Angew Chem Int Ed 53:1616–1620Google Scholar
  62. 62.
    Yuan Q, Wu Y, Wang J, Lu D, Zhao Z, Liu T, Zhang X, Tan W (2013) Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light. Angew Chem Int Ed 52:13965–13969Google Scholar
  63. 63.
    Pinaud F, Clarke S, Sittner A, Dahan M (2010) Probing cellular events, one quantum dot at a time. Nat Meth 7:275–285Google Scholar
  64. 64.
    Stasiuk GJ, Tamang S, Imbert D, Poillot C, Giardiello M, Tisseyre C, Barbier EL, Fries PH, de Waard M, Reiss P, Mazzanti M (2011) Cell-permeable Ln(III) chelate-functionalized InP quantum dots as multimodal imaging agents. ACS Nano 5:8193–8201Google Scholar
  65. 65.
    Zhong H, Zhang Q, Zhang S (2011) High-intensity fluorescence imaging and sensitive electrochemical detection of cancer cells by using an extracellular supramolecular reticular DNA-quantum dot sheath. Chem-Eur J 17:8388–8394Google Scholar
  66. 66.
    Jie G, Zhao Y, Qin Y (2014) A fluorescent polymeric quantum dot/aptamer superstructure and its application for imaging of cancer cells. Chem-Asian J 9:1261–1264Google Scholar
  67. 67.
    Wei W, He X, Ma N (2014) DNA-templated assembly of a heterobivalent quantum dot nanoprobe for extra- and intracellular dual-targeting and imaging of live cancer cells. Angew Chem Int Ed 53:5573–5577Google Scholar
  68. 68.
    Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotech 18:321–325Google Scholar
  69. 69.
    López-Cebral R, Martín-Pastor M, Seijo B, Sanchez A (2014) Progress in the characterization of bio-functionalized nanoparticles using NMR methods and their applications as MRI contrast agents. Prog Nucl Mag Res Sp 79:1–13Google Scholar
  70. 70.
    Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–354Google Scholar
  71. 71.
    Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38:372–390Google Scholar
  72. 72.
    Wu YL, Xu XZ, Tang Q, Li YX (2012) A new type of silica-coated Gd2(CO3)3:Tb nanoparticle as a bifunctional agent for magnetic resonance imaging and fluorescent imaging. Nanotechnology 23:205103Google Scholar
  73. 73.
    Wadajkar AS, Menon JU, Nguyen KT (2012) Polymer-coated magnetic nanoparticles for cancer diagnosis and therapy. Rev Nanosci Nanotechnol 1:284–297Google Scholar
  74. 74.
    Peer D, Karp JM, Hong S, FaroKhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech 2:751–760Google Scholar
  75. 75.
    Santhosh PB, Ulrih NP (2013) Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett 336:8–17Google Scholar
  76. 76.
    Veiseh O, Gunn JW, Zhang MQ (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304Google Scholar
  77. 77.
    Santra S, Jativa SD, Kaittanis C, Normand G, Grimm J, Perez JM (2012) Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano 6:7281–7294Google Scholar
  78. 78.
    Chen T, Shukoor MI, Wang R, Zhao Z, Yuan Q, Bamrungsap S, Xiong X, Tan W (2011) Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5:7866–7873Google Scholar
  79. 79.
    Park J-H, von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635Google Scholar
  80. 80.
    Rosen JE, Chan L, Shieh D-B, Gu FX (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine: nanotechnology. Biol Med 8:275–290Google Scholar
  81. 81.
    Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334Google Scholar
  82. 82.
    Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659Google Scholar
  83. 83.
    Landmark KJ, DiMaggio S, Ward J, Kelly C, Vogt S, Hong S, Kotlyar A, Myc A, Thomas TP, Penner-Hahn JE, Baker JR, Holl MMB, Orr BG (2008) Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic acid-conjugated dendrimers. ACS Nano 2:773–783Google Scholar
  84. 84.
    Corot C, Robert P, Idée J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504Google Scholar
  85. 85.
    Song Y, Kohlmeir EK, Meade TJ (2008) Synthesis of multimeric MR contrast agents for cellular imaging. J Am Chem Soc 130:6662–6663Google Scholar
  86. 86.
    Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293Google Scholar
  87. 87.
    Hu H, Dai A, Sun J, Li X, Gao F, Wu L, Fang Y, Yang H, An L, Wu H, Yang S (2013) Aptamer-conjugated Mn3O4@SiO2 core-shell nanoprobes for targeted magnetic resonance imaging. Nanoscale 5:10447–10454Google Scholar
  88. 88.
    Santra S, Kaittanis C, Santiesteban OJ, Perez JM (2011) Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J Am Chem Soc 133:16680–16688Google Scholar
  89. 89.
    Olariu CI, Yiu HHP, Bouffier L, Nedjadi T, Costello E, Williams SR, Halloran CM, Rosseinsky MJ (2011) Multifunctional Fe3O4 nanoparticles for targeted bi-modal imaging of pancreatic cancer. J Mater Chem 21:12650–12659Google Scholar
  90. 90.
    Li CM, Chen T, Ocsoy I, Zhu GZ, Yasun E, You MX, Wu CC, Zheng J, Song EQ, Huang CZ, Tan WH (2014) Gold-coated Fe3O4 nanoroses with five unique functions for cancer cell targeting, imaging, and therapy. Adv Funct Mater 24:1772–1780Google Scholar
  91. 91.
    Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R, Zhang X, Tan W (2014) Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J Am Chem Soc 136:11220–11223Google Scholar
  92. 92.
    Kim JK, Choi K-J, Lee M, Jo M-H, Kim S (2012) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer-and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33:207–217Google Scholar
  93. 93.
    Liang H, Zhang X-B, Lv Y, Gong L, Wang R, Zhu X, Yang R, Tan W (2014) Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc Chem Res 47:1891–1901Google Scholar
  94. 94.
    Hu R, Zhang X-B, Kong R-M, Zhao X-H, Jiang J, Tan W (2011) Nucleic acid-functionalized nanomaterials for bioimaging applications. J Mater Chem 21:16323–16334Google Scholar
  95. 95.
    Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D, Yu C, Duan W, Yang CJ (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85:4141–4149Google Scholar
  96. 96.
    Hwang DW, Ko HY, Lee JH, Kang H, Ryu SH, Song IC, Lee DS, Kim S (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51:98–105Google Scholar
  97. 97.
    Huang C-C, Huang Y-F, Cao Z, Tan W, Chang H-T (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741Google Scholar
  98. 98.
    Kim B, Yang J, Hwang M, Choi J, Kim HO, Jang E, Lee JH, Ryu SH, Suh JS, Huh YM, Haam S (2013) Aptamer-modified magnetic nanoprobe for molecular MR imaging of VEGFR2 on angiogenic vasculature. Nanoscale Res Lett 8:1–10Google Scholar
  99. 99.
    Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103:11838–11843Google Scholar
  100. 100.
    Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139Google Scholar
  101. 101.
    Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, Shaikh M, Yuet K, Cima MJ, Langer R, Kantoff PW, Bander NH, Jon SY, Farokhzad OC (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3:1311–1315Google Scholar
  102. 102.
    Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–2249Google Scholar
  103. 103.
    Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100Google Scholar
  104. 104.
    Sancey L, Ardisson V, Riou L, Ahmadi M, Marti-Batlle D, Boturyn D, Dumy P, Fagret D, Ghezzi C, Vuillez J-P (2007) In vivo imaging of tumour angiogenesis in mice with the αvβ3 integrin-targeted tracer 99mTc-RAFT-RGD. Eur J Nucl Med Mol Imaging 34:2037–2047Google Scholar
  105. 105.
    Lim E-K, Kim B, Choi Y, Ro Y, Cho E-J, Lee JH, Ryu S-H, Suh J-S, Haam S, Huh Y-M (2014) Aptamer-conjugated magnetic nanoparticles enable efficient targeted detection of integrin αvβ3 via magnetic resonance imaging. J Biomed Mater Res A 102:49–59Google Scholar
  106. 106.
    Ko HY, Choi K-J, Lee CH, Kim S (2011) A multimodal nanoparticle-based cancer imaging probe simultaneously targeting nucleolin, integrin αvβ3 and tenascin-C proteins. Biomaterials 32:1130–1138Google Scholar
  107. 107.
    Jennings LE, Long NJ (2009) ‘Two is better than one’-probes for dual-modality molecular imaging. Chem Commun 3511–3524Google Scholar
  108. 108.
    Yin M, Li Z, Liu Z, Ren J, Yang X, Qu X (2012) Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Chem Commun 48:6556–6558Google Scholar
  109. 109.
    Li Z, Liu Z, Yin M, Yang X, Yuan Q, Ren J, Qu X (2012) Aptamer-capped multifunctional mesoporous strontium hydroxyapatite nanovehicle for cancer-cell-responsive drug delivery and imaging. Biomacromolecules 13:4257–4263Google Scholar
  110. 110.
    Zhou L, Li Z, Ju E, Liu Z, Ren J, Qu X (2013) Aptamer-directed synthesis of multifunctional lanthanide-doped porous nanoprobes for targeted imaging and drug delivery. Small 9:4262–4268Google Scholar
  111. 111.
    Kuo TR, Lai WY, Li CH, Wun YH, Chang HC, Chen JS, Yang P, Chen CC (2014) AS1411 aptamer-conjugated Gd2O3:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging. Nano Res 7:658–669Google Scholar
  112. 112.
    Shi H, Ye X, He X, Wang K, Cui W, He D, Li D, Jia X (2014) Au@Ag/Au nanoparticles assembled with activatable aptamer probes as smart “nano-doctors” for image-guided cancer thermotherapy. Nanoscale 6:8754–8761Google Scholar
  113. 113.
    Nakatsuka MA, Mattrey RF, Esener SC, Cha JN, Goodwin AP (2012) Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging. Adv Mater 24:6010–6016Google Scholar
  114. 114.
    Hong H, Goel S, Zhang Y, Cai W (2011) Molecular imaging with nucleic acid aptamers. Curr Med Chem 18:4195–4205Google Scholar
  115. 115.
    Winnard PT, Pathak AP, Dhara S, Cho SY, Raman V, Pomper MG (2008) Molecular imaging of metastatic potential. J Nucl Med 49:96S–112SGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Innovation Center for Chemistry and Molecular MedicineHunan UniversityChangshaChina
  2. 2.Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical SciencesSouthwest UniversityChongqingChina

Personalised recommendations