Skip to main content

Robust Identification of Contrasted Frames in Fluoroscopic Images

Part of the Informatik aktuell book series (INFORMAT)

Abstract

For automatic registration of 3-D models of the left atrium to fluoroscopic images, a reliable classification of images containing contrast agent is necessary. Inspired by previous approaches on contrast agent detection, we propose a learning-based framework which is able to classify contrasted frames more robustly than previous methods, Furthermore, we performed a quantitative evaluation on a clinical data set consisting of 34 angiographies. Our learning-based approach reached a classification rate of 79.5%. The beginning of a contrast injection was detected correctly in 79.4%.

Keywords

  • Support Vector Machine
  • Contrast Agent
  • Left Atrium
  • Digital Subtraction Angiography
  • Transcatheter Aortic Valve Implantation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-46224-9_6
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-46224-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calkins H, Brugada J, Packer D, et al. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for Personnel, Policy, Procedures and Follow-Up. Europace. 2007;9(6):335–79.

    CrossRef  Google Scholar 

  2. Dilling-Boer D, van der Merwe N, Adams J, et al. Ablation of focally induced atrial fibrillation. J Cardiovasc Electrophysiol. 2004;15(2):200–5.

    CrossRef  Google Scholar 

  3. Brost A, Raab J, Kleinoeder A, et al. Medizinische Bildverarbeitung f¨ur die minimalinvasive Behandlung von Vorhofflimmern. DZKF. 2013;17(6):36–41.

    Google Scholar 

  4. Bourier F, Vukajlovic D, Brost A, et al. Pulmonary vein isolation supported by MRI-derived 3D-augmented biplane fluoroscopy: a feasibility study and a quantitative analysis of the accuracy of the technique. J Cardiovasc Electrophysiol. 2007;115:3057–63.

    Google Scholar 

  5. Thivierge-Gaulin D, Chou CR, Kiraly A, et al. 3D-2D registration based on meshderived image bisection. Lect Notes Computer Sci. 2012; p. 70–78.

    Google Scholar 

  6. Zhao X, Miao S, Du L, et al. Robust 2-D/3-D registration of CT volumes with contrast-enhanced x-ray sequences in electro-physiology based on a weighted similarity measure and sequential subspace optimization. Proc ICASSP. 2013; p. 934–8.

    Google Scholar 

  7. Condurache A, Aach T, Eck K, et al. Fast detection and processing of arbitrary contrast agent injections in coronary angiopgraphy and fluoroscopy. Procs BVM. 2004; p. 5–9.

    Google Scholar 

  8. Chen T, Funka-Lea G, Comaniciu D. Robust and fast contrast inflow detection for 2D x-ray fluoroscopy. Lect Notes Computer Sci. 2011; p. 243–50.

    Google Scholar 

  9. Liao R, You W, Liu Y, et al. Integrated spatiotemporal analysis for automatic contrast agent inflow detection on angiography and fluoroscopy during transcatheter aortic valve implantation. Med Phys. 2013;40(4).

    Google Scholar 

  10. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffmann, M., Müller, S., Kurzidim, K., Strobel, N., Hornegger, J. (2015). Robust Identification of Contrasted Frames in Fluoroscopic Images. In: Handels, H., Deserno, T., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2015. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46224-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46224-9_6

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46223-2

  • Online ISBN: 978-3-662-46224-9

  • eBook Packages: Computer Science and Engineering (German Language)