Skip to main content

Automatic Single-Cell Segmentation and Tracking of Bacterial Cells in Fluorescence Microscopy Images

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2015

Abstract

Automatic single-cell image analysis allows gaining deeper insights into biological processes. We present an approach for single-cell segmentation and tracking of bacterial cells in time-lapse microscopy image data. For cell segmentation we use linear feature detection and a probability map combined with schemes for cell splitting. For cell tracking we propose an approach based on the maximal overlapping area between cells, which is robust regarding cell rotation and accurately detects cell divisions. Our approach was successfully applied to segment and track cells in time-lapse images of the life cycle of Bacillus subtilis. We also quantitatively evaluated the performance of the segmentation and tracking approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Obara B, Roberts M, Armitage J, et al. Bacterial cell identification in differential interference contrast microscopy images. BMC Bioinformatics. 2013;14(134).

    Google Scholar 

  2. Battenberg E, Bischofs-Pfeifer I. A System for Automatic Cell Segmentation of Bacterial Microscopy Images. Technical Report, UC Berkeley; 2006.

    Google Scholar 

  3. Schmitter D, Wachowicz P, Sage D, et al. A 2D/3D image analysis system to track fluorescently labeled structures in rod-shaped cells: application to measure spindle pole asymmetry during mitosis. Cell Div. 2013;8(6):1–13.

    Google Scholar 

  4. Liu X, Harvey CW, Wang H, et al. Detecting and tracking motion of myxococcus xanthus bacteria in swarms. Lect Notes Computer Sci. 2012;7510:373–80.

    Article  Google Scholar 

  5. Vallotton P, Sun C, Wang D, et al. Segmentation and tracking individual pseudomonas aeruginosa bacteria in dense populations of motile cells. Proc ICIVC. 2009; p. 221–5.

    Google Scholar 

  6. Vallotton P, Turnbull L, Whitchurch C, et al. Segmentation of dense 2D bacilli populations. Proc Int Conf on Digit Image Comp: Tech and Appl, Sydney, NSW. 2010; p. 82–6.

    Google Scholar 

  7. Zhang HP, Be’er A, Florin EL, et al. Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci, USA. 2010;107(31):13626–30.

    Article  Google Scholar 

  8. Juand RR, Levchenko A, Burlina P. Tracking cell motion using GM-PHD. Proc ISBI. 2009; p. 1154–7.

    Google Scholar 

  9. Zuiderveld K. Contrast limited adaptive histograph equalization. In: Graphic Gems IV. Academic Press Professional, San Diego; 1994. p. 474–85.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaja Liluashvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liluashvili, V. et al. (2015). Automatic Single-Cell Segmentation and Tracking of Bacterial Cells in Fluorescence Microscopy Images. In: Handels, H., Deserno, T., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2015. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46224-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46224-9_42

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46223-2

  • Online ISBN: 978-3-662-46224-9

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics