Efficient Similarity Search by Combining Indexing and Caching Strategies

  • Nieves R. Brisaboa
  • Ana Cerdeira-Pena
  • Veronica Gil-Costa
  • Mauricio Marin
  • Oscar Pedreira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8939)


A critical issue in large scale search engines is to efficiently handle sudden peaks of incoming query traffic. Research in metric spaces has addressed this problem from the point of view of creating caches that provide information to, if possible, exactly/approximately answer a query very quickly without needing to further process an index. However, one of the problems of that approach is that, if the cache is not able to provide an answer, the distances computed up to that moment are wasted, and the search must proceed through the index structure. In this paper we present an index structure that serves a twofold role: that of a cache and an index in the same structure. In this way, if we are not able to provide a quick approximate answer for the query, the distances computed up to that moment are used to query the index. We present an experimental evaluation of the performance obtained with our structure.


Cluster Center Index Structure Distance Computation Range Query Range Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: Caching content-based queries for robust and efficient image retrieval. In: Procs. of EDBT, pp. 780–790 (2009)Google Scholar
  2. 2.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: Procs. of VLDB, pp. 426–435 (1997)Google Scholar
  3. 3.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Computing Surveys 33, 273–321 (2001)CrossRefGoogle Scholar
  4. 4.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity search. The metric space approach. Advances in Database Systems, vol. 32. Springer (2006)Google Scholar
  5. 5.
    Chavez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pattern Recognition Letters 26(9), 1363–1376 (2005)CrossRefGoogle Scholar
  6. 6.
    Gil-Costa, V., Marin, M., Reyes, N.: Parallel query processing on distributed clustering indexes. Journal of Discrete Algorithms 7(1), 3–17 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Pedreira, O., Brisaboa, N.R.: Spatial selection of sparse pivots for similarity search in metric spaces. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 434–445. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Bustos, B., Pedreira, O., Brisaboa, N.: A dynamic pivot selection technique for similarity search in metric spaces. In: Procs. of SISAP, pp. 105–112. IEEE Press (2008)Google Scholar
  9. 9.
    Ares, L.G., Brisaboa, N.R., Esteller, M.F., Pedreira, O., Ángeles, S.: Places: Optimal pivots to minimize the index size for metric access methods. In: Procs. of SISAP, pp. 74–80. IEEE Press (2009)Google Scholar
  10. 10.
    Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: A metric cache for similarity search. In: Procs. of LSDS-IR, pp. 43–50 (2008)Google Scholar
  11. 11.
    Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: Similarity caching in large-scale image retrieval. Information Processing and Management (2011)Google Scholar
  12. 12.
    Skopal, T., Lokoc, J., Bustos, B.: D-cache: Universal distance cache for metric access methods. Transactions on Knowledge and Data Engineering 99 (2011)Google Scholar
  13. 13.
    Barrios, J., Bustos, B., Skopal, T.: Snake table: A dynamic pivot table for streams of k-nn searches. In: Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404, pp. 25–39. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Marin, M., Gil-Costa, V., Bonacic, C.: A search engine index for multimedia content. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 866–875. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007),

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nieves R. Brisaboa
    • 1
  • Ana Cerdeira-Pena
    • 1
  • Veronica Gil-Costa
    • 3
  • Mauricio Marin
    • 2
  • Oscar Pedreira
    • 1
  1. 1.Database Lab., Facultade de InformáticaUniversidade da CoruñaSpain
  2. 2.CITIAPS, DIINFUniversity of SantiagoChile
  3. 3.DCCNational University of San LuisArgentina

Personalised recommendations