The Maximum k-Differential Coloring Problem

  • Michael A. Bekos
  • Michael Kaufmann
  • Stephen Kobourov
  • Sankar Veeramoni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8939)

Abstract

Given an n-vertex graph G and two positive integers d,k ∈ ℕ, the (d,kn)-differential coloring problem asks for a coloring of the vertices of G (if one exists) with distinct numbers from 1 to kn (treated as colors), such that the minimum difference between the two colors of any adjacent vertices is at least d. While it was known that the problem of determining whether a general graph is (2,n)-differential colorable is NP-complete, our main contribution is a complete characterization of bipartite, planar and outerplanar graphs that admit (2,n)-differential colorings. For practical reasons, we also consider color ranges larger than n, i.e., k > 1. We show that it is NP-complete to determine whether a graph admits a (3,2n)-differential coloring. The same negative result holds for the (\(\lfloor2n/3\rfloor,2n\))-differential coloring problem, even in the case where the input graph is planar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bansal, R., Srivastava, K.: Memetic algorithm for the antibandwidth maximization problem. Journal of Heuristics 17, 39–60 (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Bekos, M., Kaufmann, M., Kobourov, S., Veeramoni, S.: A note on maximum differential coloring of planar graphs. Journal of Discrete Algorithms (2014)Google Scholar
  3. 3.
    Bekos, M., Kobourov, S., Kaufmann, M., Veeramoni, S.: The maximum k-differential coloring problem. Arxiv report (2014), http://arxiv.org/abs/1409.8133
  4. 4.
    Brewer, C.: ColorBrewer - Color Advice for Maps, http://www.colorbrewer.org
  5. 5.
    Calamoneri, T., Massini, A., Török, L., Vrt’o, I.: Antibandwidth of complete k-ary trees. Electronic Notes in Discrete Mathematics 24, 259–266 (2006)CrossRefGoogle Scholar
  6. 6.
    Dillencourt, M.B., Eppstein, D., Goodrich, M.T.: Choosing colors for geometric graphs via color space embeddings. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 294–305. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Dobrev, S., Královic, R., Pardubská, D., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of hamming graphs. Electronic Notes in Discrete Mathematics 34, 295–300 (2009)CrossRefGoogle Scholar
  8. 8.
    Duarte, A., Martí, R., Resende, M., Silva, R.: Grasp with path relinking heuristics for the antibandwidth problem. Networks 58(3), 171–189 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Ellson, J., Gansner, E., Koutsofios, E., North, S., Woodhull, G.: Graphviz and dynagraph static and dynamic graph drawing tools. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software, pp. 127–148. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Gansner, E., Hu, Y., Kobourov, S.: Gmap: Visualizing graphs and clusters as maps. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 201–208 (2010)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  12. 12.
    Hale, W.: Frequency assignment: Theory and applications. Proceedings of the IEEE 68(12), 1497–1514 (1980)CrossRefGoogle Scholar
  13. 13.
    Hu, Y., Kobourov, S., Veeramoni, S.: On maximum differential graph coloring. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 274–286. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Isaak, G.: Powers of hamiltonian paths in interval graphs. Journal of Graph Theory 27, 31–38 (1998)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Leung, J.Y.-T., Vornberger, O., Witthoff, J.D.: On some variants of the bandwidth minimization problem. SIAM Journal on Computing 13(3), 650–667 (1984)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Miller, Z., Pritikin, D.: On the separation number of a graph. Networks 19(6), 651–666 (1989)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Papadimitriou, C.: The NP-Completeness of the bandwidth minimization problem. Computing 16, 263–270 (1975)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Proskurowski, A., Syso, M.: Efficient vertex- and edge-coloring of outerplanar graphs. SIAM Journal on Algebraic Discrete Methods 7(1), 131–136 (1986)CrossRefMATHGoogle Scholar
  19. 19.
    Purves, D., Lotto, R.B.: Why we see what we do: An empirical theory of vision. Sinauer Associates (2003)Google Scholar
  20. 20.
    Raspaud, A., Schröder, H., Sýkora, O., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discrete Math. 309(11), 3541–3552 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Wang, X., Wu, X., Dumitrescu, S.: On explicit formulas for bandwidth and antibandwidth of hypercubes. Discrete Applied Mathematics 157(8), 1947–1952 (2009)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Weili, Y., Xiaoxu, L., Ju, Z.: Dual bandwidth of some special trees. Journal of Zhengzhou University (Natural Science) 35(3), 16–19 (2003)MathSciNetGoogle Scholar
  23. 23.
    Yixun, L., Jinjiang, Y.: The dual bandwidth problem for graphs. Journal of Zhengzhou University (Natural Science) 35(1), 1–5 (2003)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Michael Kaufmann
    • 1
  • Stephen Kobourov
    • 2
  • Sankar Veeramoni
    • 2
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenGermany
  2. 2.Department of Computer ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations