Advertisement

Environmental Bioeffects and Safety Assessment of Silver Nanoparticles

  • Sujuan Yu
  • Lingxiangyu Li
  • Qunfang Zhou
  • Jingfu LiuEmail author
  • Guibin Jiang
Chapter

Abstract

The large production and expanding application of silver nanoparticles (AgNPs) in consumer market would inevitably bring additional sources of AgNPs in the natural environment, and the long-term and incremental exposure to both biota and human is also expected, which prompts scientists to consider more comprehensively the impacts of AgNPs on ecosystem health and safety in light of their toxicity as shown in Chap. 5. As the number of literature focused on the ecological effects of AgNPs gradually increase, it is possible to describe preliminarily the current knowledge of environmental bioeffects and safety assessment of AgNPs. In this chapter, we try to summarize and discuss the works that has been done so far to follow the environmental bioeffects and risk assessment of AgNPs.

Keywords

Sewage Sludge Natural Organic Matter Terrestrial Organism Ecotoxicological Effect Marine Medaka 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46(13):7037–7045. doi:10.1021/es3001757CrossRefGoogle Scholar
  2. 2.
    Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049. doi:10.1021/ac303636sCrossRefGoogle Scholar
  3. 3.
    Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. doi:10.1016/j.envint.2010.10.012CrossRefGoogle Scholar
  4. 4.
    Lubick N (2008) Nanosilver toxicity: ions, nanoparticles-or both? Environ Sci Technol 42(23):8617–8617. doi:10.1021/es8026314CrossRefGoogle Scholar
  5. 5.
    George S, Lin SJ, Jo ZX, Thomas CR, Li LJ, Mecklenburg M, Meng H, Wang X, Zhang HY, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6 (5):3745?3759. doi:10.1021/nn204671vCrossRefGoogle Scholar
  6. 6.
    Zhao CM, Wang WX (2012) Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46(20):11345?11351. doi:10.1021/es3014375CrossRefGoogle Scholar
  7. 7.
    Cunningham S, Brennan-Fournet ME, Ledwith D, Byrnes L, Joshi L (2013) Effect of nanoparticle stabilization and physicochemical properties on exposure outcome: acute toxicity of silver nanoparticle preparations in zebrafish (Danio rerio). Environ Sci Technol 47(8):3883?3892. doi:10.1021/es303695fCrossRefGoogle Scholar
  8. 8.
    Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378?5386. doi:10.1021/es204531yCrossRefGoogle Scholar
  9. 9.
    Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE Jr (2013) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to  5. George S, Lin SJ, Jo ZX, Thomas CR, Li LJ, Mecklenburg M, Meng H, Wang X, Zhang HY, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6 (5):3745–3759. doi:10.1021/nn204671vCrossRefGoogle Scholar
  10. 52.
    Zhao CM, Wang WX (2012) Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46(20):11345–11351. doi:10.1021/es3014375Google Scholar
  11. 53.
    Cunningham S, Brennan-Fournet ME, Ledwith D, Byrnes L, Joshi L (2013) Effect of nanoparticle stabilization and physicochemical properties on exposure outcome: acute toxicity of silver nanoparticle preparations in zebrafish (Danio rerio). Environ Sci Technol 47(8):3883–3892. doi:10.1021/es303695fGoogle Scholar
  12. 54.
    Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378–5386. doi:10.1021/es204531yGoogle Scholar
  13. 10.
    Yang XY, Jiang CJ, Hsu-Kim H, Badireddy AR, Dykstra M, Wiesner M, Hinton DE, Meyer JN (2014) Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ Sci Technol 48(6):3486–3495. doi:10.1021/es404444nCrossRefGoogle Scholar
  14. 11.
    Wirth SM, Lowry GV, Tilton RD (2012) Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46(22):12687–12696. doi:10.1021/es301521pCrossRefGoogle Scholar
  15. 12.
    Kennedy AJ, Chappell MA, Bednar AJ, Ryan AC, Laird JG, Stanley JK, Steevens JA (2012) Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ Sci Technol 46(19):10772–10780. doi:10.1021/es302322yCrossRefGoogle Scholar
  16. 13.
    Wang J, Wang WX (2014) Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Environ Toxicol Chem 33(3):632–640. doi:10.1002/etc.2471CrossRefGoogle Scholar
  17. 14.
    Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127. doi:10.1021/es202417tCrossRefGoogle Scholar
  18. 15.
    van Aerle R Lange A Moorhouse A Paszkiewicz K Ball K Johnston BD de-Bastos E Booth T Tyler CR Santos EM (2013) Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47(14):8005–8014. doi:10.1021/es401758dCrossRefGoogle Scholar
  19. 16.
    Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47(23):13440–13448. doi:10.1021/es403527nCrossRefGoogle Scholar
  20. 17.
    Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45(12):5260–5266. doi:10.1021/es2007758CrossRefGoogle Scholar
  21. 18.
    Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514. doi:10.1021/es101565jCrossRefGoogle Scholar
  22. 19.
    Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE Jr, Lowry GV (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46(13):6992–7000. doi:10.1021/es203732xCrossRefGoogle Scholar
  23. 20.
    Thalmann B, Voegelin A, Sinnet B, Morgenroth E, Kaegi R (2014) Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environ Sci Technol 48(9):4885–4892. doi:10.1021/es5003378CrossRefGoogle Scholar
  24. 21.
    Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano lett 12(8):4271–4275. doi:10.1021/nl301934wGoogle Scholar
  25. 22.
    Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290. doi:10.1021/es803259gCrossRefGoogle Scholar
  26. 23.
    Das P, Xenopoulos MA, Williams CJ, Hoque ME, Metcalfe CD (2012) Effects of silver nanoparticles on bacterial activity in natural waters. Environ Toxicol Chem 31(1):122–130. doi:10.1002/etc.716CrossRefGoogle Scholar
  27. 25.
    Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013) Phytostimulation of poplars and arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449. doi:10.1021/es4004334CrossRefGoogle Scholar
  28. 24.
    Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090. doi:10.1021/es302973yCrossRefGoogle Scholar
  29. 26.
    Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47(18):10637–10644. doi:10.1021/es402209wGoogle Scholar
  30. 27.
    Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Env Res Public Health 9(5):1649–1662. doi:10.3390/ijerph9051649CrossRefGoogle Scholar
  31. 28.
    Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45(11):4974–4979. doi:10.1021/es104216bCrossRefGoogle Scholar
  32. 29.
    Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmcol 242(3):263–269. doi:10.1016/j.taap.2009.10.016CrossRefGoogle Scholar
  33. 30.
    Kwok KWH, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, Liu J, Marinakos SM, Hinton DE (2012) Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat Toxicol 120:59–66. doi:10.1016/j.aquatox.2012.04.012CrossRefGoogle Scholar
  34. 31.
    Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5 (16):1897–1910. doi:10.1002/smll.200801716CrossRefGoogle Scholar
  35. 32.
    Powers CM, Slotkin TA, Seidler FJ, Badireddy AR, Padilla S (2011) Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol 33(6):708–714. doi:10.1016/j.ntt.2011.02.002CrossRefGoogle Scholar
  36. 33.
    Jang M, Kim W, Lee S, Henry TB, Park J (2014) Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environ Sci Technol 48(19):11568–11574. doi:10.1021/es5022813CrossRefGoogle Scholar
  37. 34.
    Heckmann LH, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ (2011) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20(1):226–233. doi:10.1007/s10646-010-0574-0CrossRefGoogle Scholar
  38. 35.
    Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc Am J 75(2):365–377. doi:10.2136/sssaj2010.0127npsCrossRefGoogle Scholar
  39. 36.
    Hu C, Li M, Wang W, Cui Y, Chen J, Yang L (2012) Ecotoxicity of silver nanoparticles on earthworm Eisenia fetida: responses of the antioxidant system, acid phosphatase and ATPase. Toxicol Environ Chem 94(4):732–741. doi:10.1080/02772248.2012.668020CrossRefGoogle Scholar
  40. 37.
    Ghosh IN, Patil SD, Sharma TK, Srivastava SK, Pathania R, Navani NK (2013) Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications. Int J Nanomed 8:4721–4731. doi:10.2147/ijn.s49649Google Scholar
  41. 38.
    Li P, Li J, Wu CZ, Wu QS (2005) Synergistic antibacterial effects of beta-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16(9):1912–1917. doi:10.1088/0957-4484/16/9/082CrossRefGoogle Scholar
  42. 39.
    Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61(12):1719–1726. doi:10.1099/jmm.0.047100-0CrossRefGoogle Scholar
  43. 40.
    De La Torre-Roche R Hawthorne J Musante C Xing BS Newman LA Ma XM White JC (2013) Impact of Ag nanoparticle exposure on p,p’-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). Environ Sci Technol 47(2):718–725. doi:10.1021/es3041829CrossRefGoogle Scholar
  44. 41.
    Li Y, Niu JF, Shang EX, Crittenden J (2014) Photochemical transformation and photoinduced toxicity reduction of silver nanoparticles in the presence of perfluorocarboxylic acids under UV irradiation. Environ Sci Technol 48(9):4946–4953. doi:10.1021/es500596aCrossRefGoogle Scholar
  45. 42.
    Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637CrossRefGoogle Scholar
  46. 43.
  47. 44.
    Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips A, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138. doi:10.1080/17435390902725914CrossRefGoogle Scholar
  48. 45.
    Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7. doi:10.1186/1743-8977-7-8Google Scholar
  49. 46.
    Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45 (24):10713–10719. doi:10.1021/es202770mCrossRefGoogle Scholar
  50. 47.
    EPA US (2012) Nanomaterial case study: nanoscale silver in disinfectant spray (Final report). US Environmental Protection Agency, Washington, DC:EPA/600/R-610/081FGoogle Scholar
  51. 48.
    Hedberg J, Skoglund S, Karlsson ME, Wold S, Wallinder IO, Hedberg Y (2014) Sequential studies of silver released from silver nanoparticles in aqueous media simulating sweat, laundry detergent solutions and surface water. Environ Sci Technol 48(13):7314–7322. doi:10.1021/es500234yCrossRefGoogle Scholar
  52. 49.
    Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553CrossRefGoogle Scholar
  53. 50.
    Comfort KK, Braydich-Stolle LK, Maurer EI, Hussain SM (2014) Less is more: Long-term in vitro exposure to low levels of silver nanoparticles provides new insights for nanomaterial evaluation. ACS Nano 8(4):3260–3271. doi:10.1021/nn5009116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sujuan Yu
    • 1
  • Lingxiangyu Li
    • 1
  • Qunfang Zhou
    • 1
  • Jingfu Liu
    • 1
    Email author
  • Guibin Jiang
    • 1
  1. 1.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijingChina

Personalised recommendations