Advertisement

Toxicological Effects and Mechanisms of Silver Nanoparticles

  • Qunfang ZhouEmail author
  • Wei Liu
  • Yanmin Long
  • Cheng Sun
  • Guibin Jiang
Chapter

Abstract

Silver compounds have been used for centuries in health care products as an antiseptic. Currently, the use of silver nanoparticles (AgNPs) in consumer products is increasing. There are emerging concerns on the possible contribution of AgNPs to environmental and human toxicity. In this chapter, we summarize the toxicological effects of AgNPs, and discuss the toxicological mechanisms and potential influencing factors. The specific risk assessment for AgNPs is not feasible as information on possible long term effects at environmental relevant doses are lacking.

Keywords

Reactive Oxygen Species Aquatic Toxicity AgNP Suspension Dermal Toxicity AgNPs Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tang B, Li J, Hou X, Afrin T, Sun L, Wang X (2013) Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind Eng Chem Res 52(12):4556–4563. doi:10.1021/ie3033872Google Scholar
  2. 2.
    Lombi E, Donner E, Scheckel KG, Sekine R, Lorenz C, Von Goetz N, Nowack B (2014) Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358. doi:10.1016/j.chemosphere.2014.03.116Google Scholar
  3. 3.
    Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964. doi:10.1021/es801785mGoogle Scholar
  4. 4.
    Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS (2009) Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother 53(8):3538–3540. doi:10.1128/aac.01106-08Google Scholar
  5. 5.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2014) Antimicrobial effects of silver nanoparticles (vol 1, pp 95, 2007). Nanomed-Nanotechnol Biol Med 10(5):1119–1119. doi:10.1016/j.nano.2014.04.007Google Scholar
  6. 6.
    Taglietti A, Fernandez YAD, Amato E, Cucca L, Dacarro G, Grisoli P, Necchi V, Pallavicini P, Pasotti L, Patrini M (2012) Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria. Langmuir 28(21):8140–8148. doi:10.1021/la3003838Google Scholar
  7. 7.
    Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24(1):135–141. doi:10.1007/s10534-010-9381-6Google Scholar
  8. 8.
    Song J, Kang H, Lee C, Hwang SH, Jang J (2012) Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity. ACS Appl Mater Interfaces 4(1):460–465. doi:10.1021/am201563tGoogle Scholar
  9. 9.
    Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna Tj, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253. doi:10.1021/jp063826hGoogle Scholar
  10. 10.
    Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed-Nanotechnol Biol Med 3(2):168–171. doi:10.1016/j.nano.2007.02.001Google Scholar
  11. 11.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol Biol Med 3(1):95–101. doi:10.1016/j.nano.2006.12.001Google Scholar
  12. 12.
    Kim SW, Kim KS, Lamsal K, Kim Y-J, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19(8):760–764. doi:10.4014/jmb.0812.649Google Scholar
  13. 13.
    Lu L, Sun RWY, Chen R, Hui CK, Ho CM, Luk JM, Lau GKK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13(2):253–262Google Scholar
  14. 14.
    Sun RWY, Chen R, Chung NPY, Ho CM, Lin CLS, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun (40):5059–5061. doi:10.1039/b510984aGoogle Scholar
  15. 15.
    Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8(1). doi:10.1186/1477-3155-8-1Google Scholar
  16. 16.
    Hoppens MA, Sylvester CB, Qureshi AT, Scherr T, Czaps DR, Duran RS, Savage PB, Hayes D (2014) Ceragenin mediated selectivity of antimicrobial silver nanoparticles. ACS Appl Mater Interfaces 6(16):13900–13908. doi:10.1021/am504640fGoogle Scholar
  17. 17.
    Xiu ZM, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008. doi:10.1021/es201918fGoogle Scholar
  18. 18.
    Burchardt AD, Carvalho RN, Valente A, Nativo P, Gilliland D, Garcia CP, Passarella R, Pedroni V, Rossi F, Lettieri T (2012) Effects of silver nanoparticles in diatom thalassiosira pseudonana and cyanobacterium synechococcus sp. Environ Sci Technol 46(20):11336–11344. doi:10.1021/es300989eGoogle Scholar
  19. 19.
    Ashkarran AA, Ghavami M, Aghaverdi H, Stroeve P, Mahmoudi M (2012) Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Chem Res Toxicol 25(6):1231–1242. doi:10.1021/tx300083sGoogle Scholar
  20. 20.
    Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127. doi:10.1021/es202417tGoogle Scholar
  21. 21.
    Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microb 73(6):1712–1720. doi:10.1128/aem.02218-06Google Scholar
  22. 22.
    Wigginton NS, De Titta A, Piccapietra F, Dobias J, Nesatty VJ, Suter MJF, Bernier-Latmani R (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44(6):2163–2168. doi:10.1021/es903187sGoogle Scholar
  23. 23.
    Larimer C, Islam MS, Ojha A, Nettleship I (2014) Mutation of environmental mycobacteria to resist silver nanoparticles also confers resistance to a common antibiotic. Biometals 27(4):695–702. doi:10.1007/s10534-014-9761-4Google Scholar
  24. 24.
    Chamakura K, Perez-Ballestero R, Luo Z, Bashir S, Liu J (2011) Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloid Surf B 84(1):88–96. doi:10.1016/j.colsurfb.2010.12.020Google Scholar
  25. 25.
    Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microb 71(11):7589–7593. doi:10.1128/aem.71.11.7589-7593.2005Google Scholar
  26. 26.
    Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Koeller M (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7(1):347–354. doi:10.1016/j.actbio.2010.08.003Google Scholar
  27. 27.
    Greulich C, Diendorf J, Gessmann J, Simon T, Habijan T, Eggeler G, Schildhauer TA, Epple M, Koeller M (2011) Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater 7(9):3505–3514. doi:10.1016/j.actbio.2011.05.030Google Scholar
  28. 28.
    Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R (2011) Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 22(37). doi:10.1088/0957-4484/22/37/375101Google Scholar
  29. 29.
    Peng H, Zhang X, Wei Y, Liu W, Li S, Yu G, Fu X, Cao T, Deng X (2012) Cytotoxicity of silver nanoparticles in human embryonic stem cell-derived fibroblasts and an L-929 cell line. J Nanomater. doi:10.1155/2012/160145Google Scholar
  30. 30.
    Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3):319–330. doi:10.3109/17435390.2010.483745Google Scholar
  31. 31.
    Caballero-Diaz E, Pfeiffer C, Kastl L, Rivera-Gil P, Simonet B, Valcarcel M, Jimenez-Lamana J, Laborda F, Parak WJ (2013) The toxicity of silver nanoparticles depends on their uptake by cells and thus on their surface chemistry. Part Part Syst Charact 30(12):1079–1085. doi:10.1002/ppsc.201300215Google Scholar
  32. 32.
    Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346. doi:10.3109/10408440903453074Google Scholar
  33. 33.
    Martinez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Hoek AV, Morales Sanchez E, Reiner NE, Gaynor EC, Pryzdial ELG, Conway EM, Orrantia E, Ruiz F, Av-Gay Y, Bach H (2012) Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomed-Nanotechnol Biol Med 8(3):328–336. doi:10.1016/j.nano.2011.06.014Google Scholar
  34. 34.
    Xin L, Wang J, Wu Y, Guo S, Tong J (2014) Increased oxidative stress and activated heat shock proteins in human cell lines by silver nanoparticles. Hum Exp Toxicol doi:10.1177/0960327114538988Google Scholar
  35. 35.
    Austin LA, Kang B, Yen C-W, El-Sayed MA (2011) Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconjugate Chem 22(11):2324–2331. doi:10.1021/bc200386mGoogle Scholar
  36. 36.
    Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkin TA (2011) Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating, and composition. Environ Health Perspect 119(1):37–44. doi:10.1289/ehp.1002337Google Scholar
  37. 37.
    Ahlberg S, Antonopulos A, Diendorf J, Dringen R, Epple M, Flock R, Goedecke W, Graf C, Haberl N, Helmlinger J, Herzog F, Heuer F, Hirn S, Johannes C, Kittler S, Koller M, Korn K, Kreyling WG, Krombach F, Lademann J, Loza K, Luther EM, Malissek M, Meinke MC, Nordmeyer D, Pailliart A, Raabe J, Rancan F, Rothen-Rutishauser B, Ruhl E, Schleh C, Seibel A, Sengstock C, Treuel L, Vogt A, Weber K, Zellner R (2014) PVP-coated, negatively charged silver nanoparticles: a multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein J Nanotech 5:1944–1965. doi:10.3762/bjnano.5.205Google Scholar
  38. 38.
    Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201(1):27–33. doi:10.1016/j.toxlet.2010.12.001Google Scholar
  39. 39.
    Yin N, Liu Q, Liu J, He B, Cui L, Li Z, Yun Z, Qu G, Liu S, Zhou Q, Jiang G (2013) Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 9(9–10):1831–1841. doi:10.1002/smll.201202732Google Scholar
  40. 40.
    Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350. doi:10.3390/ma6062295Google Scholar
  41. 41.
    Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37 (2):517–531. doi:10.1016/j.envint.2010.10.012Google Scholar
  42. 42.
    Blinova I, Niskanen J, Kajankari P, Kanarbik L, Kaekinen A, Tenhu H, Penttinen OP, Kahru A (2013) Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus (pp 3456). Environ Sci Pollut Res 20(6):4293–4293. doi:10.1007/s11356-013-1734-6Google Scholar
  43. 43.
    Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978. doi:10.1897/08-002.1Google Scholar
  44. 44.
    von Nickisch-Rosenegk M, Teschke T, Bier FF (2012) Construction of an artificial cell membrane anchor using DARC as a fitting for artificial extracellular functionalities of eukaryotic cells. J Nanobiotechnol 10. doi:10.1186/1477-3155-10-1Google Scholar
  45. 45.
    Allen HJ, Impellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM, Govindaswamy S, Roose DL, Nadagouda MN (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29(12):2742–2750. doi:10.1002/etc.329Google Scholar
  46. 46.
    Kennedy AJ, Hull MS, Bednar AJ, Goss JD, Gunter JC, Bouldin JL, Vikesland PJ, Steevens JA (2010) Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environ Sci Technol 44(24):9571–9577. doi:10.1021/es1025382Google Scholar
  47. 47.
    Voelker C, Boedicker C, Daubenthaler J, Oetken M, Oehlmann J (2013) Comparative toxicity assessment of nanosilver on three daphnia species in acute, chronic and multi-generation experiments. PloS One 8(10). doi:10.1371/journal.pone.0075026Google Scholar
  48. 48.
    Rainville L-C, Carolan D, Varela AC, Doyle H, Sheehan D (2014) Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna. Analyst 139(7):1678–1686. doi:10.1039/c3an02160bGoogle Scholar
  49. 49.
    McLaughlin J, Bonzongo J-CJ (2012) Effects of natural water chemistry on nanosilver behavior and toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata. Environ Toxicol Chem 31(1):168–175. doi:10.1002/etc.720Google Scholar
  50. 50.
    Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E (2012) In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol 2012:293784–293784. doi:10.1155/2012/293784Google Scholar
  51. 51.
    Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411(23–24):1841–1848. doi:10.1016/j.cca.2010.08.016Google Scholar
  52. 52.
    Laban G, Nies LF, Turco RF, Bickham JW, Sepulveda MS (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19(1):185–195. doi:10.1007/s10646-009-0404-4Google Scholar
  53. 53.
    Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1(2):133–143. doi:10.1021/nn700048yGoogle Scholar
  54. 54.
    Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 100(2):160–167. doi:10.1016/j.aquatox.2009.11.014Google Scholar
  55. 55.
    Weaver E (2012) Nanosivler toxic to fish at “surprising low” levels. Environmental Building News.http://www2.buildinggreencom/article/nanosilver-toxic-fish-surprisingly-low-levels. Accessed Oct. 2012
  56. 56.
    Sharma VK (2013) Stability and toxicity of silver nanoparticles in aquatic environment: a review. In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements, vol 1124. ACS Symposium Series, American Chemical Society, Washington, DC, pp 165–179Google Scholar
  57. 57.
    Kennedy AJ, Chappell MA, Bednar AJ, Ryan AC, Laird JG, Stanley JK, Steevens JA (2012) Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ Sci Technol 46(19):10772–10780. doi:10.1021/es302322yGoogle Scholar
  58. 58.
    Kalbassi MR, Salari-joo H, Johari A (2011) Toxicity of silver nanoparticles in aquatic ecosystems: salinity as the main cause in reducing toxicity. Iranian J Toxicol 5(12):436–443Google Scholar
  59. 59.
    Roemer I, White TA, Baalousha M, Chipman K, Viant MR, Lead JR (2011) Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J Chromatogr A 1218(27):4226–4233. doi:10.1016/j.chroma.2011.03.034Google Scholar
  60. 60.
    Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367. doi:10.1021/es103995xGoogle Scholar
  61. 61.
    Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc Am J 75(2):365–377. doi:10.2136/sssaj2010.0127npsGoogle Scholar
  62. 62.
    Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5(3):432–444. doi:10.3109/17435390.2010.537382Google Scholar
  63. 63.
    Tsyusko OV, Hardas SS, Shoults-Wilson WA, Starnes CP, Joice G, Butterfield DA, Unrine JM (2012) Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida. Environ Pollut 171:249–255. doi:10.1016/j.envpol.2012.08.003Google Scholar
  64. 64.
    Hansch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173(4):554–558. doi:10.1002/jpln.200900358Google Scholar
  65. 65.
    SCENIHR (Scientific committee on emerging and newly identified health risks), Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. European Union, 2013, ISSN: 1831-4783, DOI:10.2772/76851Google Scholar
  66. 66.
    van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Rivera ZH, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJB, Hollman PCH, Hendriksen PJM, Marvin HJP, Peijnenburg AACM, Bouwmeester H (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442. doi:10.1021/nn302649pGoogle Scholar
  67. 67.
    Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczynska A, Chwastowska J, Sadowska-Bratek M, Chajduk E, Wojewodzka M, Dusinska M, Kruszewski M (2012) Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 32(11):920–928. doi:10.1002/jat.2758Google Scholar
  68. 68.
    Lee YJ, Kim J, Oh J, Bae S, Lee S, Hong IS, Kim SH (2012) Ion-release kinetics and ecotoxicity effects of silver nanoparticles. Environ Toxicol Chem 31(1):155–159. doi:10.1002/etc.717Google Scholar
  69. 69.
    Malaczewska J (2014) Effect of 28-day oral administration of silver nanocolloid on the peripheral blood leukocytes in mice. Pol J Vet Sci 17(2):263–273. doi:10.2478/pjvs-2014-0037Google Scholar
  70. 70.
    Wang Z, Liu SJ, Ma J, Qu GB, Wang X, Yu SJ, He J, Liu JF, Xia T, Jiang GB (2013) Silver nanoparticles induced RNA polymerase-silver binding and RNA transcription inhibition in Erythroid Progenitor cells. ACS Nano 7(5):4171–4186. doi:10.1021/nn400594sGoogle Scholar
  71. 71.
    Gaiser BK, Hirn S, Kermanizadeh A, Kanase N, Fytianos K, Wenk A, Haberl N, Brunelli A, Kreyling WG, Stone V (2013) Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci 131(2):537–547. doi:10.1093/toxsci/kfs306Google Scholar
  72. 72.
    Sarhan OMM, Hussein RM (2014) Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int J Nanomed 9:1505–1517. doi:10.2147/ijn.s56729Google Scholar
  73. 73.
    Hong JS, Kim S, Lee SH, Jo E, Lee B, Yoon J, Eom IC, Kim HM, Kim P, Choi K, Lee MY, Seo YR, Kim Y, Lee Y, Choi J, Park K (2014) Combined repeated-dose toxicity study of silver nanoparticles with the reproduction/developmental toxicity screening test. Nanotoxicology 8(4):349–362. doi:10.3109/17435390.2013.780108Google Scholar
  74. 74.
    Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Oldenburg SJ, Paule MG, Slikker W, Jr, Hussain SM, Ali SF (2010) Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 118(1):160–170. doi:10.1093/toxsci/kfq244Google Scholar
  75. 75.
    Liu Y, Guan W, Ren G, Yang Z (2012) The possible mechanism of silver nanoparticle impact on hippocampal synaptic plasticity and spatial cognition in rats. Toxicol Lett 209(3):227–231. doi:10.1016/j.toxlet.2012.01.001Google Scholar
  76. 76.
    Zhang Y, Ferguson SA, Watanabe F, Jones Y, Xu Y, Biris AS, Hussain S, Ali SF (2013) Silver nanoparticles decrease body weight and locomotor activity in adult male rats. Small 9(9–10):1715–1720. doi:10.1002/smll.201201548Google Scholar
  77. 77.
    Wijnhoven S, Dekkers S, Hagens W, De Jong W (2009) Exposure to nanomaterials in consumer products. RIVM letter report 340370001/2009Google Scholar
  78. 78.
    Geyer O, Rothkoff L, Lazar M (1989) clearing of corneal argyrosis by yag laser. Brit J Ophthalmol 73(12):1009–1010. doi:10.1136/bjo.73.12.1009Google Scholar
  79. 79.
    White JML, Powell AM, Brady K, Russell-Jones R (2003) Severe generalized argyria secondary to ingestion of colloidal silver protein. Clin Exp Dermatol 28(3):254–256. doi:10.1046/j.1365–2230.2003.01214.xGoogle Scholar
  80. 80.
    El-Ansary A, Al-Daihan S (2009) On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol 2009:754810–754810. doi:10.1155/2009/754810Google Scholar
  81. 81.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. doi:10.1088/0957-4484/16/10/059Google Scholar
  82. 82.
    Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(6):746–750. doi:10.1002/smll.200700954Google Scholar
  83. 83.
    Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24(14):7457–7464. doi:10.1021/la800091yGoogle Scholar
  84. 84.
    Kohn T, Nelson KL (2007) Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters. Environ Sci Technol 41(1):192–197. doi:10.1021/es061716iGoogle Scholar
  85. 85.
    Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916–942916. doi:10.1155/2013/942916Google Scholar
  86. 86.
    He D, Jones AM, Garg S, Pham AN, Waite TD (2011) Silver nanoparticle-reactive oxygen species interactions: application of a charging-discharging model. J Phys Chem C 115(13):5461–5468. doi:10.1021/jp111275aGoogle Scholar
  87. 87.
    Hwang I-s, Lee J, Hwang JH, Kim K-J, Lee DG (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. Febs J 279(7):1327–1338. doi:10.1111/j.1742-4658.2012.08527.xGoogle Scholar
  88. 88.
    Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briede JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817. doi:10.1016/j.biomaterials.2011.08.085Google Scholar
  89. 89.
    Hsin YH, Chena CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139. doi:10.1016/j.toxlet.2008.04.015Google Scholar
  90. 90.
    Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179(2):93–100. doi:10.1016/j.toxlet.2008.04.009Google Scholar
  91. 91.
    Suliman YA, Ali D, Alarifi S, Harrath AH, Mansour L, Alwasel SH (2013) Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ Toxicol. doi:10.1002/tox.21880Google Scholar
  92. 92.
    Yang X, Jiang C, Hsu-Kim H, Badireddy AR, Dykstra M, Wiesner M, Hinton DE, Meyer JN (2014) Silver nanoparticle behavior, uptake, and toxicity in caenorhabditis elegans: effects of natural organic matter. Environ Sci Technol 48(6):3486–3495. doi:10.1021/es404444nGoogle Scholar
  93. 93.
    Guo D, Zhu L, Huang Z, Zhou H, Ge Y, Ma W, Wu J, Zhang X, Zhou X, Zhang Y, Zhao Y, Gu N (2013) Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 34(32):7884–7894. doi:10.1016/j.biomaterials.2013.07.015Google Scholar
  94. 94.
    Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, Chanvorachote P, Maniratanachote R (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 27(1):330–338. doi:10.1016/j.tiv.2012.08.021Google Scholar
  95. 95.
    Guo D, Zhao Y, Zhang Y, Wang Q, Huang Z, Ding Q, Guo Z, Zhou X, Zhu L, Gu N (2014) The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J Biomed Nanotechnol 10(4):669–678. doi:10.1166/jbn.2014.1625Google Scholar
  96. 96.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. doi:10.1126/science.1114397Google Scholar
  97. 97.
    Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398(2):613–650. doi:10.1007/s00216-010-3881-7Google Scholar
  98. 98.
    Jiao ZH, Li M, Feng YX, Shi JC, Zhang J, Shao B (2014) Hormesis effects of silver nanoparticles at non-cytotoxic doses to human Hepatoma cells. PloS One 9(7). doi:10.1371/journal.pone.0102564Google Scholar
  99. 99.
    Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275. doi:10.1021/nl301934wGoogle Scholar
  100. 100.
    Cao H, Liu X (2010) Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdiscip Rev-Nanomed Nanobiotechnol 2(6):670–684. doi:10.1002/wnan.113Google Scholar
  101. 101.
    Sedlak RH, Hnilova M, Grosh C, Fong H, Baneyx F, Schwartz D, Sarikaya M, Tamerler C, Traxler B (2012) Engineered Escherichia coli silver-binding periplasmic protein that promotes silver tolerance. Appl Environ Microbiol 78(7):2289–2296. doi:10.1128/aem.06823-11Google Scholar
  102. 102.
    Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles-Nanoparticle or silver ion? Toxicol Lett 208(3):286–292. doi:10.1016/j.toxlet.2011.11.002Google Scholar
  103. 103.
    Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190(2):156–162. doi:10.1016/j.toxlet.2009.07.009Google Scholar
  104. 104.
    Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11. doi:10.1186/1743-8977-11-11Google Scholar
  105. 105.
    Mudunkotuwa IA, Grassian VH (2011) The devil is in the details (or the surface): impact of surface structure and surface energetics on understanding the behavior of nanomaterials in the environment. J Environ Monit 13(5):1135–1144. doi:10.1039/c1em00002kGoogle Scholar
  106. 106.
    Castranova V (2011) Overview of current toxicological knowledge of engineered nanoparticles. J Occup Environ Med 53(6):S14–S17. doi:10.1097/JOM.0b013e31821b1e5aGoogle Scholar
  107. 107.
    Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Ali SF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev-Nanomed Nanobiotechnol 2(5):544–568. doi:10.1002/wnan.103Google Scholar
  108. 108.
    Cao H, Liu X, Meng F, Chu PK (2011) Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 32(3):693–705. doi:10.1016/j.biomaterials.2010.09.066Google Scholar
  109. 109.
    Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588. doi:10.1021/es703238hGoogle Scholar
  110. 110.
    Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43(15):6046–6051. doi:10.1021/es900754qGoogle Scholar
  111. 111.
    Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, Brown GE Jr, Lowry GV (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46(2):752–759. doi:10.1021/es201686jGoogle Scholar
  112. 112.
    Lim DH, Jang J, Kim S, Kang T, Lee K, Choi IH (2012) The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33(18):4690–4699. doi:10.1016/j.biomaterials.2012.03.006Google Scholar
  113. 113.
    Chen Y, Wang Z, Xu M, Wang X, Liu R, Liu Q, Zhang Z, Xia T, Zhao J, Jiang G, Xu Y, Liu S (2014) Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. ACS Nano 8(6):5813–5825. doi:10.1021/nn500719mGoogle Scholar
  114. 114.
    Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013) Phytostimulation of poplars and arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449. doi:10.1021/es4004334Google Scholar
  115. 115.
    Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619. doi:10.1021/jp712087mGoogle Scholar
  116. 116.
    Zhao CM, Wang WX (2012) Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46(20):11345–11351. doi:10.1021/es3014375Google Scholar
  117. 117.
    Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40(10):1067–1076. doi:10.1021/ar7000974Google Scholar
  118. 118.
    Pal S, Tak YK, Joardar J, Kim W, Lee JE, Han MS, Song JM (2009) Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions. J Nanosci Nanotechno 9(3):2092–2103. doi:10.1166/jnn.2009.427Google Scholar
  119. 119.
    George S, Lin S, Jo Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6(5):3745–3759. doi:10.1021/nn204671vGoogle Scholar
  120. 120.
    Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914. doi:10.1021/es2037405Google Scholar
  121. 121.
    El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287. doi:10.1021/es1034188Google Scholar
  122. 122.
    Lee KJ, Browning LM, Nallathamby PD, Xu X-HN (2013) Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem Res Toxicol 26(6):904–917. doi:10.1021/tx400087dGoogle Scholar
  123. 123.
    Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834. doi:10.1021/jp711616vGoogle Scholar
  124. 124.
    Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95(2):300–312. doi:10.1093/toxsci/kfl165Google Scholar
  125. 125.
    El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266. doi:10.1021/es902240kGoogle Scholar
  126. 126.
    Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175. doi:10.1021/es9035557Google Scholar
  127. 127.
    He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ (2012) Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33(30):7547–7555. doi:10.1016/j.biomaterials.2012.06.076Google Scholar
  128. 128.
    Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE Jr (2011) Sulfidation processes of pvp-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45(12):5260–5266. doi:10.1021/es2007758Google Scholar
  129. 129.
    Liu J, Pennell KG, Hurt RH (2011) Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol 45(17):7345–7353. doi:10.1021/es201539sGoogle Scholar
  130. 130.
    Liu JY, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913. doi:10.1021/nn102272nGoogle Scholar
  131. 131.
    Arnaout CL, Gunsch CK (2012) Impacts of silver nanoparticle coating on the nitrification potential of nitrosomonas Europaea. Environ Sci Technol 46(10):5387–5395. doi:10.1021/es204540zGoogle Scholar
  132. 132.
    Yin Y, Liu J, Jiang G (2012) Sunlight-induced reduction of ionic ag and au to metallic nanoparticles by dissolved organic matter. ACS Nano 6(9):7910–7919. doi:10.1021/nn302293rGoogle Scholar
  133. 133.
    Akaighe N, MacCuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M, Sharma VK (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45(9):3895–3901. doi:10.1021/es103946gGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Qunfang Zhou
    • 1
    Email author
  • Wei Liu
    • 2
  • Yanmin Long
    • 1
  • Cheng Sun
    • 1
  • Guibin Jiang
    • 1
  1. 1.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijingChina
  2. 2.Institute of Chemical SafetyChinese Academy of Inspection and QuarantineBeijingChina

Personalised recommendations