Skip to main content

Fate and Transport of Silver Nanoparticles in the Environment

Abstract

Anthropogenic and naturally occurring silver nanoparticles (AgNPs), once released or formed in the environment, could transport, distribute, and transform in various environmental environment, which have great impacts on not only their fate but also their uptake and toxicity in the environments. In this chapter, we introduce recent model and experimental studies on the transport and distribution of AgNPs in air, aquatic, and terrestrial systems, and discuss the transformation of AgNPs in the environment including change of coating, aggregation, sedimentation, dissolution and re-reduction, sulfidation and chlorination. These studies highlight that AgNPs are highly dynamic in physical and chemical species in the environment, owning to the distinguished chemical properties of AgNPs from other nanoparticles. Additionally, the knowledge gaps in fate and transport of AgNPs and recommendations for future research are also discussed.

Keywords

  • Humic Acid
  • Inductively Couple Plasma Mass Spectrometry
  • Extracellular Polymeric Substance
  • Fulvic Acid
  • Natural Organic Matter

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-46070-2_4
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-46070-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Hardcover Book
USD   99.00
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7

References

  1. Lowry GV, Hotze EM, Bernhardt ES, Dionysiou DD, Pedersen JA, Wiesner MR, Xing BS (2010) Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an introduction to the special series. J Environ Qual 39(6):1867–1874. doi:10.2134/jeq2010.0297

    CAS  CrossRef  Google Scholar 

  2. Westerhoff P, Nowack B (2013) Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Acc Chem Res 46(3):844–853. doi:10.1021/ar300030n

    CAS  CrossRef  Google Scholar 

  3. Gottschalk F, Sun TY, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300. doi:10.1016/j.envpol.2013.06.003

    CAS  CrossRef  Google Scholar 

  4. Gottschalk F, Ort C, Scholz RW, Nowack B (2011) Engineered nanomaterials in rivers—exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159(12):3439–3445. doi:10.1016/j.envpol.2011.08.023

    CAS  CrossRef  Google Scholar 

  5. Musee N (2011) Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol 30(9):1181–1195. doi:10.1177/0960327110391387

    CAS  CrossRef  Google Scholar 

  6. Hendren CO, Badireddy AR, Casman E, Wiesner MR (2013) Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Sci Total Environ 449:418–425. doi:10.1016/j.scitotenv2013.01.078

    CAS  CrossRef  Google Scholar 

  7. Tiede K, Westerhoff P, Hansen SF, Fern GJ, Hankin SM, Aitken RJ, Chaudhry Q, Boxall A (2011) Review of the risks posed to drinking water by man-made nanoparticles. Sand Hutton, Food and Environment Research Agency. Available via http://dwi.defra.gov.uk/research/completed-esearch/reports/dwi70_2_246.pdf. Accessed 15 Oct 2014

  8. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553

    CAS  CrossRef  Google Scholar 

  9. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637

    CAS  CrossRef  Google Scholar 

  10. Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20(6):567–574. doi:10.1080/08958370701874671

    CAS  CrossRef  Google Scholar 

  11. Quadros ME, Marr LC (2010) Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manage 60(7):770–781. doi:10.3155/1047–3289.60.7.770

    CAS  CrossRef  Google Scholar 

  12. Park J, Kwak BK, Bae E, Lee J, Kim Y, Choi K, Yi J (2009) Characterization of exposure to silver nanoparticles in a manufacturing facility. J Nanopart Res 11(7):1705–1712. doi:10.1007/s11051-009-9725-8

    CAS  CrossRef  Google Scholar 

  13. Gangwal S, Brown JS, Wang A, Houck KA, Dix DJ, Kavlock RJ, Hubal EAC (2011) Informing selection of nanomaterial concentrations for toxcast in vitro testing based on occupational exposure potential. Environ Health Persp 119(11):1539–1546. doi:10.1289/ehp.1103750

    CAS  CrossRef  Google Scholar 

  14. Walser T, Schwabe F, Thöni L, De Temmerman L, Hellweg S (2013) Nanosilver emissions to the atmosphere: a new challenge? E3S Web of Conferences 1:14003

    Google Scholar 

  15. Jankowska E, Lukaszewska J (2013) Potential exposure to silver nanoparticles during spraying preparation for air-conditioning cleaning. Med Pr 64(1):57–67. doi:0.13075/mp.5893/2013/0007

    CAS  Google Scholar 

  16. Hagendorfer H, Lorenz C, Kaegi R, Sinnet B, Gehrig R, Goetz NV, Scheringer M, Ludwig C, Ulrich A (2010) Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J Nanopart Res 12(7):2481–2494. doi:10.1007/s11051-009-9816-6

    CAS  CrossRef  Google Scholar 

  17. Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45(24):10713–10719. doi:10.1021/es202770m

    CAS  CrossRef  Google Scholar 

  18. Lorenz C, Hagendorfer H, von Goetz N, Kaegi R, Gehrig R, Ulrich A, Scheringer M, Hungerbuhler K (2011) Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J Nanopart Res 13(8):3377–3391. doi:10.1007/s11051-011-0256-8

    CAS  CrossRef  Google Scholar 

  19. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036. doi:10.1021/es204608d

    CAS  CrossRef  Google Scholar 

  20. Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Environ Sci Technol 46(13):6915–6924. doi:10.1021/es204682q

    CAS  CrossRef  Google Scholar 

  21. Bone AJ, Colman BP, Gondikas AP, Newton KM, Harrold KH, Cory RM, Unrine JM, Klaine SJ, Matson CW, Di Giulio RT (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 2. Toxicity and Ag speciation. Environ Sci Technol 46(13):6925–6933. doi:10.1021/es204683m

    CAS  CrossRef  Google Scholar 

  22. Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47(12):3866–3877. doi:10.1016/j.watres.2012.11.060

    CAS  CrossRef  Google Scholar 

  23. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45(9):3902–3908. doi:10.1021/es1041892

    CAS  CrossRef  Google Scholar 

  24. Li LXY, Hartmann G, Doblinger M, Schuster M (2013) Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol 47(13):7317–7323. doi: 10.1021/es3041658

    CAS  Google Scholar 

  25. Holder AL, Vejerano EP, Zhou XZ, Marr LC (2013) Nanomaterial disposal by incineration. Environ Sci-Process Impacts 15(9):1652–1664. doi:10.1039/c3em00224a

    CAS  CrossRef  Google Scholar 

  26. Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV (2014) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48(1):104–112. doi:10.1021/es403646x

    CAS  CrossRef  Google Scholar 

  27. Lombi E, Donner E, Taheri S, Tavakkoli E, Jamting AK, McClure S, Naidu R, Miller BW, Scheckel KG, Vasilev K (2013) Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut 176:193–197. doi:10.1016/j.envpol.2013.01.029

    CAS  CrossRef  Google Scholar 

  28. Pan B, Xing BS (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63(4):437–456. doi:10.1111/j.1365-2389.2012.01475.x

    CAS  CrossRef  Google Scholar 

  29. Lin SH, Cheng YW, Bobcombe Y, Jones KL, Liu J, Wiesner MR (2011) Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis. Environ Sci Technol 45(12):5209–5215. doi:10.1021/es2002327

    CAS  CrossRef  Google Scholar 

  30. Yang XY, Lin SH, Wiesner MR (2014) Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media. J Hazard Mater 264:161–168. doi:10.1016/j.jhazmat.2013.11.025

    CAS  CrossRef  Google Scholar 

  31. Flory J, Kanel SR, Racz L, Impellitteri CA, Silva RG, Goltz MN (2013) Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. J Nanopart Res 15(3):1484. doi:10.1007/s11051–013-1484-x

    Google Scholar 

  32. Mittelman AM, Taghavy A, Wang YG, Abriola LM, Pennell KD (2013) Influence of dissolved oxygen on silver nanoparticle mobility and dissolution in water-saturated quartz sand. J Nanopart Res 15(7):UNSP1765. doi:10.1007/s11051-013-1765-4

    Google Scholar 

  33. El Badawy AM Hassan AA Scheckel KG Suidan MT Tolaymat TM (2013) Key factors controlling the transport of silver nanoparticles in porous media. Environ Sci Technol 47(9):4039–4045. doi:10.1021/es304580r

    CAS  CrossRef  Google Scholar 

  34. Tian YA, Gao B, Silvera-Batista C, Ziegler KJ (2010) Transport of engineered nanoparticles in saturated porous media. J Nanopart Res 12(7):2371–2380. doi:10.1007/s11051-010-9912-7

    CAS  CrossRef  Google Scholar 

  35. Neukum C, Braun A, Azzam R (2014) Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones. J Contam Hydrol 158:1–13. doi:10.1016/j.jconhyd.2013.12.002

    CAS  CrossRef  Google Scholar 

  36. Ren DJ, Smith JA (2013) Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment. Environ Sci Technol 47(8):3825–3832. doi:10.1021/es4000752

    CAS  CrossRef  Google Scholar 

  37. Xiao Y, Wiesner MR (2013) Transport and retention of selected engineered nanoparticles by porous media in the presence of a biofilm. Environ Sci Technol 47(5):2246–2253. doi:10.1021/es304501n

    CAS  CrossRef  Google Scholar 

  38. Li Z, Hassan AA, Sahle-Demessie E, Sorial GA (2013) Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters. Water Res 47(17):6457–6466. doi:10.1016/j.watres.2013.08.026

    CAS  CrossRef  Google Scholar 

  39. Mitzel MR, Tufenkji N (2014) Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. Environ Sci Technol 48(5):2715–2723. doi:10.1021/es404598v

    CAS  CrossRef  Google Scholar 

  40. Whitley AR, Levard C, Oostveen E, Bertsch PM, Matocha CJ, von der Kammer F, Unrine JM (2013) Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. Environ Pollut 182:141–149. DOI:10.1016/j.envpol.2013.06.027

    CAS  CrossRef  Google Scholar 

  41. Cornelis G, Doolette C, Thomas M, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J 76(3):891–902. doi:10.2136/sssaj2011.0360

    CAS  CrossRef  Google Scholar 

  42. Cornelis G, Pang LP, Doolette C, Kirby JK, McLaughlin MJ (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ 463:120–130. doi:10.1016/j.scitotenv.2013.05.089

    CrossRef  CAS  Google Scholar 

  43. Sagee O, Dror I, Berkowitz B (2012) Transport of silver nanoparticles (AgNPs) in soil. Chemosphere 88(5):670–675. doi:10.1016/j.chemosphere.2012.03.055

    CAS  CrossRef  Google Scholar 

  44. Liang Y, Bradford SA, Simunek J, Heggen M, Vereecken H, Klumpp E (2013) Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Environ Sci Technol 47(21):12229–12237. doi:10.1021/es402046u

    CAS  CrossRef  Google Scholar 

  45. Liang Y, Bradford SA, Simunek J, Vereecken H, Klumpp E (2013) Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Res 47(7):2572–2582. doi:10.1016/j.watres.2013.02.025

    CAS  CrossRef  Google Scholar 

  46. Emerson HP, Hart AE, Baldwin JA, Waterhouse TC, Kitchens CL, Mefford OT, Powell BA (2014) Physical transformations of iron oxide and silver nanoparticles from an intermediate scale field transport study. J Nanopart Res 16(2):2258. doi:10.1007/s11051-014-2258–9

    Google Scholar 

  47. Ma XM, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061. doi:10.1016/j.scitotenv.2010.03.031

    CAS  CrossRef  Google Scholar 

  48. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498. doi:10.1021/jf104517j

    CAS  CrossRef  Google Scholar 

  49. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090. doi:10.1021/es302973y

    CAS  CrossRef  Google Scholar 

  50. Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li KG, Huang Y, Chen YS, Kolmakov A, Ma XM (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7(3):323–337. doi:10.3109/17435390.2012.658094

    CAS  CrossRef  Google Scholar 

  51. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43 (24):9473–9479. doi:10.1021/es901695c

    CAS  CrossRef  Google Scholar 

  52. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309. doi:10.1016/j.ecoenv.2014.03.022

    CAS  CrossRef  Google Scholar 

  53. Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499. doi:10.1016/j.chemosphere.2011.10.013

    CAS  CrossRef  Google Scholar 

  54. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67. doi:10.1016/j.ecoenv.2013.03.033

    CAS  CrossRef  Google Scholar 

  55. Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013) Phytostimulation of Poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449. doi:10.1021/es4004334

    CAS  CrossRef  Google Scholar 

  56. Hawthorne J, Musante C, Sinha SK, White JC (2012) Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita Pepo. Int J Phytoremediation 14(4):429–442. doi:10.1080/15226514.2011.620903

    CAS  CrossRef  Google Scholar 

  57. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47(4):651–658. doi:10.1016/j.procbio.2012.01.006

    CAS  CrossRef  Google Scholar 

  58. Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44(17):6532–6549. doi:10.1021/es100598h

    CAS  CrossRef  Google Scholar 

  59. Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914. doi:10.1021/es2037405

    CAS  CrossRef  Google Scholar 

  60. Yu SJ, Yin YG, Chao JB, Shen MH, Liu JF (2014) Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag0 and reduction of Ag+. Environ Sci Technol 48(1):403–411. doi:10.1021/es404334a

    CAS  CrossRef  Google Scholar 

  61. Li Y, Niu JF, Shang EX, Crittenden J (2014) Photochemical transformation and photoinduced toxicity reduction of silver nanoparticles in the presence of perfluorocarboxylic acids under UV irradiation. Environ Sci Technol 48(9):4946–4953. doi:10.1021/es500596a

    CAS  CrossRef  Google Scholar 

  62. Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48(16):8946–8962. doi:10.1021/es502342r

    CAS  CrossRef  Google Scholar 

  63. Sanchez-Cortes S, Francioso O, Ciavatta C, Garcia-Ramos JV, Gessa C (1998) pH-dependent adsorption of fractionated peat humic substances on different silver colloids studied by surface-enhanced Raman spectroscopy. J Colloid Interface Sci 198(2):308–318. doi:10.1006/jcis.1997.5293

    CAS  CrossRef  Google Scholar 

  64. Lau BLT, Hockaday WC, Ikuma K, Furman O, Decho AW (2013) A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloid Surf A 435:22–27. doi:10.1016/j.colsurfa.2012.11.065

    CAS  CrossRef  Google Scholar 

  65. Khan SS, Mukherjee A, Chandrasekaran N (2011) Impact of exopolysaccharides on the stability of silver nanoparticles in water. Water Res 45(16):5184–5190. doi:10.1016/j.watres.2011.07.024

    CAS  CrossRef  Google Scholar 

  66. Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, Peukert W, Treuel L (2012) Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir 28(25):9673–9679. doi:10.1021/La301104a

    CAS  CrossRef  Google Scholar 

  67. Ostermeyer AK, Mumuper CK, Semprini L, Radniecki T (2013) Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Environ Sci Technol 47(24):14403–14410. doi:10.1021/es4033106

    CAS  CrossRef  Google Scholar 

  68. Shang L, Dorlich RM, Trouillet V, Bruns M, Nienhaus GU (2012) Ultrasmall fluorescent silver nanoclusters: protein adsorption and its effects on cellular responses. Nano Res 5(8):531–542. doi:10.1007/s12274-012-0238-x

    CAS  CrossRef  Google Scholar 

  69. Wigginton NS, De Titta A, Piccapietra F, Dobias J, Nesatty VJ, Suter MJF, Bernier-Latmani R (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44(6):2163–2168. doi:10.1021/Es903187s

    CAS  CrossRef  Google Scholar 

  70. Ravindran A, Singh A, Raichur AM, Chandrasekaran N, Mukherjee A (2010) Studies on interaction of colloidal Ag nanoparticles with bovine serum albumin (BSA). Colloid Surf B 76(1):32–37. doi:10.1016/j.colsurfb.2009.10.005

    CAS  CrossRef  Google Scholar 

  71. Voicescu M, Ionescu S, Angelescu DG (2012) Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles. J Nanopart Res 14(10):1174. doi:10.1007/s11051-012-1174-0

    Google Scholar 

  72. Podila R, Chen R, Ke PC, Brown JM, Rao AM (2012) Effects of surface functional groups on the formation of nanoparticle-protein corona. Appl Phys Lett 101(26):263701. doi:10.1063/1.4772509

    Google Scholar 

  73. Shannahan JH, Lai XY, Ke PC, Podila R, Brown JM, Witzmann FA (2013) Silver nanoparticle protein corona composition in cell culture media. PLoS One 8(9):e74001. doi:10.1371/journal.pone.0074001

    Google Scholar 

  74. Gan W, Xu BL, Dai HL (2011) Activation of thiols at a silver nanoparticle surface. Angew Chem Int Ed Engl 50(29):6622–6625. doi:10.1002/anie.201101430

    CAS  CrossRef  Google Scholar 

  75. Huang GG, Han XX, Hossain MK, Kitahama Y, Ozaki Y (2010) A study of glutathione molecules adsorbed on silver surfaces under different chemical environments by surface-enhanced Raman scattering in combination with the heat-induced sensing method. Appl Spectrosc 64(10):1100–1108. doi: 10.1366/000370210792973523

    CAS  CrossRef  Google Scholar 

  76. Jing CY, Fang Y (2007) Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of L-cysteine on gold/silver nanoparticles. Chem Phys 332(1):27–32. doi:10.1016/j.chemphys.2006.11.019

    CAS  CrossRef  Google Scholar 

  77. Bonifacio A, Dalla Marta S, Spizzo R, Cervo S, Steffan A, Colombatti A, Sergo V (2014) Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal Bioanal Chem 406(9–10):2355–2365. doi:10.1007/s00216-014-7622-1

    CAS  CrossRef  Google Scholar 

  78. Wang CY, Liu CY, Wang M, Shen T (1999) Spectroscopic studies of thiocyanate in silver hydrosol and the influence of halide ions. Spectrochimca Acta A 55(5):991–998. doi:10.1016/S1386-1425(98)00240-6

    CrossRef  Google Scholar 

  79. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem-Us 86(17):3391–3395. doi:10.1021/j100214a025

    CAS  CrossRef  Google Scholar 

  80. Barthelmes J, Plieth W (1995) Sers investigations on the adsorption of pyridine carboxylic-acids on silver—influence of pH and supporting electrolyte. Electrochimca Acta 40(15):2487–2490. doi:10.1016/0013-4686(95)00103-L

    CAS  CrossRef  Google Scholar 

  81. Du JJ, Cui JL, Jing CY (2014) Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem Commun 50(3):347–349. doi:10.1039/c3cc46920d

    CAS  CrossRef  Google Scholar 

  82. Garrell RL, Shaw KD, Krimm S (1983) Surface enhanced Raman-spectroscopy of halide-ions on colloidal silver—morphology and coverage dependence. Surf Sci 124(2–3):613–624. doi:10.1016/0039-6028(83)90815-4

    CAS  CrossRef  Google Scholar 

  83. Bell SEJ, Sirimuthu NMS (2005) Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids. J Phys Chem A 109(33):7405–7410. doi:10.1021/jp052184f

    CAS  CrossRef  Google Scholar 

  84. Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46(13):7037–7045. doi:10.1021/es3001757

    CAS  CrossRef  Google Scholar 

  85. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18(8):1482–1484

    CAS  Google Scholar 

  86. Yang Y, Gajaraj S, Wall JD, Hu ZQ (2013) A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamics. Water Res 47(10):3422–3430. doi:10.1016/j.watres.2013.03.040

    CAS  CrossRef  Google Scholar 

  87. Visnapuu M, Joost U, Juganson K, Kunnis-Beres K, Kahru A, Kisand V, Ivask A (2013) Dissolution of silver nanowires and nanospheres dictates their toxicity to Escherichia coli. Biomed Res Int 2013:819252–819260. doi:10.1155/2013/819252

    CrossRef  CAS  Google Scholar 

  88. Kennedy AJ, Hull MS, Bednar AJ, Goss JD, Gunter JC, Bouldin JL, Vikesland PJ, Steevens JA (2010) Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environ Sci Technol 44(24):9571–9577. doi:10.1021/es1025382

    CAS  CrossRef  Google Scholar 

  89. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275. doi:10.1021/nl301934w

    CAS  CrossRef  Google Scholar 

  90. Newton KM, Puppala HL, Kitchens CL, Colvin VL, Klaine SJ (2013) Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environ Toxicol Chem 32(10):2356–2364. doi:10.1002/etc.2300

    CAS  CrossRef  Google Scholar 

  91. Angel BM, Batley GE, Jarolimek CV, Rogers NJ (2013) The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93(2):359–365. doi:10.1016/j.chemosphere.2013.04.096

    CAS  CrossRef  Google Scholar 

  92. Sotiriou GA, Meyer A, Knijnenburg JTN, Panke S, Pratsinis SE (2012) Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 28(45):15929–15936. doi:10.1021/la303370d

    CAS  CrossRef  Google Scholar 

  93. Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47(9):4140–4146. doi:10.1021/es304023p

    CAS  CrossRef  Google Scholar 

  94. Liu JY, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175. doi:10.1021/es9035557

    CAS  CrossRef  Google Scholar 

  95. Liu JY, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913. doi:10.1021/nn102272n

    CAS  CrossRef  Google Scholar 

  96. Zhang W, Yao Y, Sullivan N, Chen YS (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45(10):4422–4428. doi:10.1021/es104205a

    CAS  CrossRef  Google Scholar 

  97. Ho CM, Wong CK, Yau SKW, Lok CN, Che CM (2011) Oxidative dissolution of silver nanoparticles by dioxygen: a kinetic and mechanistic study. Chem-Asian J 6(9):2506–2511. doi:10.1002/asia.201100034

    CAS  CrossRef  Google Scholar 

  98. Ma R, Levard C, Marinakos SM, Cheng YW, Liu J, Michel FM, Brown GE, Lowry GV (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46(2):752–759. doi:10.1021/es201686j

    CAS  CrossRef  Google Scholar 

  99. Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378–5386. doi:10.1021/es204531y

    CAS  CrossRef  Google Scholar 

  100. Ho CM, Yau SKW, Lok CN, So MH, Che CM (2010) Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem-Asian J 5(2):285–293. doi:10.1002/asia.200900387

    CAS  CrossRef  Google Scholar 

  101. He D, Garg S, Waite TD (2012) H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species. Langmuir 28(27):10266–10275. doi:10.1021/la300929g

    CAS  CrossRef  Google Scholar 

  102. Yuan ZH, Chen YB, Li TT, Yu CP (2013) Reaction of silver nanoparticles in the disinfection process. Chemosphere 93(4):619–625. doi:10.1016/j.chemosphere.2013.06.010

    CAS  CrossRef  Google Scholar 

  103. Maurer-Jones MA, Mousavi MPS, Chen LD, Buhlmann P, Haynes CL (2013) Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis. Chem Sci 4(6):2564–2572. doi:10.1039/c3sc50320h

    CAS  CrossRef  Google Scholar 

  104. Mumper CK, Ostermeyer AK, Semprini L, Radniecki TS (2013) Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Chemosphere 93(10):2493–2498. doi:10.1016/j.chemosphere.2013.08.098

    CrossRef  CAS  Google Scholar 

  105. Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45(12):5260–5266. doi:10.1021/es2007758

    CAS  CrossRef  Google Scholar 

  106. Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE (2013) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47(11):5738–5745. doi:10.1021/es400396f

    CAS  CrossRef  Google Scholar 

  107. Grillet N, Manchon D, Cottancin E, Bertorelle F, Bonnet C, Broyer M, Lerme J, Pellarin M (2013) Photo-oxidation of individual silver nanoparticles: a real-time tracking of optical and morphological changes. J Phys Chem C 117(5):2274–2282. doi:10.1021/jp311502h

    CAS  CrossRef  Google Scholar 

  108. Tejamaya M, Romer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017. doi:10.1021/es2038596

    CAS  CrossRef  Google Scholar 

  109. He D, Bligh MW, Waite TD (2013) Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. Environ Sci Technol 47(16):9148–9156. doi:10.1021/es400391a

    CAS  CrossRef  Google Scholar 

  110. Cheng YW, Yin LY, Lin SH, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115(11):4425–4432. doi:10.1021/jp109789j

    CAS  CrossRef  Google Scholar 

  111. Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5(11):8950–8957. doi:10.1021/nn2031319

    CAS  CrossRef  Google Scholar 

  112. Shi JP, Ma CY, Xu B, Zhang HW, Yu CP (2012) Effect of light on toxicity of nanosilver to Tetrahymena pyriformis. Environ Toxicol Chem 31(7):1630–1638. doi:10.1002/etc.1864

    CAS  CrossRef  Google Scholar 

  113. Pettibone JM, Gigault J, Hackley VA (2013) Discriminating the states of matter in metallic nanoparticle transformations: what are we missing? ACS Nano 7(3):2491–2499. doi:10.1021/nn3058517

    CAS  CrossRef  Google Scholar 

  114. Shi JP, Xu B, Sun X, Ma CY, Yu CP, Zhang HW (2013) Light induced toxicity reduction of silver nanoparticles to Tetrahymena Pyriformis: effect of particle size. Aquat Toxicol 132:53–60. doi:10.1016/j.aquatox.2013.02.001

    CrossRef  CAS  Google Scholar 

  115. Yu WL, Borkovec M (2002) Distinguishing heteroaggregation from homoaggregation in mixed binary particle suspensions by multiangle static and dynamic light scattering. J Phys Chem B 106(51):13106–13110. doi:10.1021/jp021792h

    CAS  CrossRef  Google Scholar 

  116. Park JW, Oh JH, Kim WK, Lee SK (2014) Toxicity of citrate-coated silver nanoparticles differs according to method of suspension preparation. B Environ Contam Tox 93(1):53–59. doi:10.1007/s00128-014-1296-4

    CAS  CrossRef  Google Scholar 

  117. Huynh KA, McCaffery JM, Chen KL (2014) Heteroaggregation reduces antimicrobial activity of silver nanoparticles: evidence for nanoparticle–cell proximity effects. Environ Sci Technol Lett 1(9):361–366. doi:10.1021/ez5002177

    CAS  CrossRef  Google Scholar 

  118. El Badawy AM Luxton TP Silva RG Scheckel KG Suidan MT Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266. doi:10.1021/es902240k

    CAS  CrossRef  Google Scholar 

  119. Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45(13):5564–5571. doi:10.1021/es200157h

    CAS  CrossRef  Google Scholar 

  120. Li X, Lenhart JJ, Walker HW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28(2):1095–1104. doi:10.1021/la202328n

    CAS  CrossRef  Google Scholar 

  121. Zook JM, Halter MD, Cleveland D, Long SE (2012) Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity. J Nanopart Res 14(10):1165. doi: 10.1007/S11051-012-1165-1

    Google Scholar 

  122. Khan SS, Srivatsan P, Vaishnavi N, Mukherjee A, Chandrasekaran N (2011) Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics. J Hazard Mater 192(1):299–306. doi: 10.1016/j.jhazmat.2011.05.024

    CAS  Google Scholar 

  123. Zhang W, Yao Y, Li KG, Huang Y, Chen YS (2011) Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159(12):3757–3762 doi:10.1016/j.envpol.2011.07.013

    CAS  CrossRef  Google Scholar 

  124. Baalousha M, Nur Y, Romer I, Tejamaya M, Lead JR (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 454:119–131. doi:10.1016/j.scitotenv.2013.02.093

    CrossRef  CAS  Google Scholar 

  125. Akaighe N, Depner SW, Banerjee S, Sharma VK, Sohn M (2012) The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee river humic acid/natural organic matter. Sci Total Environ 441:277–289. doi:10.1016/j.scitotenv.2012.09.055

    CAS  CrossRef  Google Scholar 

  126. Skoglund S, Lowe TA, Hedberg J, Blomberg E, Wallinder IO, Wold S, Lundin M (2013) Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles. Langmuir 29(28):8882–8891. doi:10.1021/la4012873

    CAS  CrossRef  Google Scholar 

  127. Zhou DX, Abdel-Fattah AI, Keller AA (2012) Clay particles destabilize engineered nanoparticles in aqueous environments. Environ Sci Technol 46(14):7520–7526. doi:10.1021/es3004427

    CAS  CrossRef  Google Scholar 

  128. Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409(12):2443–2450. doi:10.1016/j.scitotenv.2011.03.020

    CAS  CrossRef  Google Scholar 

  129. Piccapietra F, Sigg L, Behra R (2012) Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environ Sci Technol 46(2):818–825. doi:10.1021/Es202843h

    CAS  CrossRef  Google Scholar 

  130. Quik JTK, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2014) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279. doi:10.1016/j.watres.2013.09.036

    CAS  CrossRef  Google Scholar 

  131. Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JCJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43(9):3322–3328. doi:10.1021/es803315v

    CAS  CrossRef  Google Scholar 

  132. Kiser MA, Ryu H, Jang HY, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44(14):4105–4114. doi:10.1016/j.watres.2010.05.036

    CAS  CrossRef  Google Scholar 

  133. Sun Q, Li Y, Tang T, Yuan ZH, Yu CP (2013) Removal of silver nanoparticles by coagulation processes. J Hazard Mater 261:414–420. doi:10.1016/j.jhazmat.2013.07.066

    CAS  CrossRef  Google Scholar 

  134. Stebounova LV, Guio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13(1):233–244. doi:10.1007/s11051-010-0022-3

    CAS  CrossRef  Google Scholar 

  135. Lytle PE (1984) Fate and speciation of silver in publicly owned treatment works. Environ Toxicol Chem 3(1):21–30. doi:10.1002/etc.5620030104

    CAS  CrossRef  Google Scholar 

  136. Anderson PR, O’Conner C, Bunker G (1997) X-ray absorption spectroscopy study of model silver compounds. Paper presented at the the 5th international conference proceedings of transport, fate and effects of silver in the environment, Hamilton, Ontario, Canada

    Google Scholar 

  137. Choi O, Cleuenger TE, Deng BL, Surampalli RY, Ross L, Hu ZQ (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43(7):1879–1886. doi:10.1016/j.watres.2009.01.029

    CAS  CrossRef  Google Scholar 

  138. Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514. doi:10.1021/es101565j

    CAS  CrossRef  Google Scholar 

  139. Liu JY, Pennell KG, Hurt RH (2011) Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol 45(17):7345–7353. doi: 10.1021/es201539s

    CAS  CrossRef  Google Scholar 

  140. Thalmann B, Voegelin A, Sinnet B, Morgenroth E, Kaegi R (2014) Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environ Sci Technol 48(9):4885–4892. doi:10.1021/es5003378

    CAS  CrossRef  Google Scholar 

  141. Liu ZH, Zhou Y, Maszenan AM, Ng WJ, Liu Y (2013) pH-dependent transformation of Ag nanoparticles in anaerobic processes. Environ Sci Technol 47(22):12630–12631. doi:10.1021/es404514 g

    CAS  CrossRef  Google Scholar 

  142. Kent R, Oser J, Vikesland PJ (2014) Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environ Sci Technol 48(15):8564–8572. doi:10.1021/es404989t

    CAS  CrossRef  Google Scholar 

  143. Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE, Lowry GV (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46(13):6992–7000. doi:10.1021/es203732x

    CAS  CrossRef  Google Scholar 

  144. Doolette CL, McLaughlin MJ, Kirby JK, Batstone DJ, Harris HH, Ge HQ, Cornelis G (2013) Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chem Cent J 7:46. doi:10.1186/1752-153X-7-46

    CrossRef  CAS  Google Scholar 

  145. VandeVoort AR, Tappero R, Arai Y (2014) Residence time effects on phase transformation of nanosilver in reduced soils. Environ Sci Pollut R 21(13):7828–7837. doi:10.1007/s11356-014-2743-9

    CrossRef  CAS  Google Scholar 

  146. Chen S, Theodorou IG, Goode AE, Gow A, Schwander S, Zhang JF, Chung KF, Tetley TD, Shaffer MS, Ryan MP, Porter AE (2013) High-resolution analytical electron microscopy reveals cell culture media-induced changes to the chemistry of silver nanowires. Environ Sci Technol 47(23):13813–13821. doi:10.1021/es403264d

    CAS  CrossRef  Google Scholar 

  147. Chen S, Goode AE, Sweeney S, Theodorou IG, Thorley AJ, Ruenraroengsak P, Chang Y, Gow A, Schwander S, Skepper J, Zhang JF, Shaffer MS, Chung KF, Tetley TD, Ryan MP, Porter AE (2013) Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale 5(20):9839–9847. doi:10.1039/c3nr03205a

    CAS  CrossRef  Google Scholar 

  148. Motte L, Urban J (2005) Silver clusters on silver sulfide nanocrystals: synthesis and behavior after electron beam irradiation. J Phys Chem B 109(46):21499–21501. doi:10.1021/jp0542322

    CAS  CrossRef  Google Scholar 

  149. Bourret GR, Lennox RB (2011) Electrochemical synthesis of Ag(0)/Ag2S heterojunctions templated on pre-formed Ag2S nanowires. Nanoscale 3(4):1838–1844. doi:10.1039/c0nr00886a

    CAS  CrossRef  Google Scholar 

  150. Di Toro DM, Mahony JD, Carbonaro RF, DeMarco T, Morrissey JC, Pablo RJ, Page JJ, Shadi TS (1997) The oxidation of silver sulfide and other heavy metal sulfides in sediments. Paper presented at the the 5th international conference proceedings of transport, fate and effects of silver in the environment, Hamilton, Ontario, Canada

    Google Scholar 

  151. Manolopoulos H, Adams NWH, Kramer JR (1996) Oxidation of silver-bearing iron sulfides: a preliminary study. Paper presented at the the 4th international conference proceedings of transport, fate and effects of silver in the environment, Madison, Wisconsin

    Google Scholar 

  152. Dale AL, Lowry GV, Casman EA (2013) Modeling nanosilver transformations in freshwater sediments. Environ Sci Technol 47(22):12920–12928. doi:10.1021/es402341t

    CAS  CrossRef  Google Scholar 

  153. Liu JY, Wang ZY, Liu FD, Kane AB, Hurt RH (2012) Chemical transformations of nanosilver in biological environments. ACS Nano 6(11):9887–9899. doi:10.1021/nn303449n

    CAS  CrossRef  Google Scholar 

  154. Li ZQ, Reinsch BC, Ma R, Gregory KB, Lowry GV (2010) Sulfidation eliminates bactericidal effects of silver nanoparticles to Escherichia coli. Abstr Pap Am Chem S 240

    Google Scholar 

  155. Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47(23):13440–13448. doi:10.1021/es403527n

    CAS  CrossRef  Google Scholar 

  156. Gherrou A, Kerdjoudj H, Molinari R, Drioli E (2002) Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier. Sep Purif Technol 28(3):235–244. doi:10.1016/S1383-5866(02)00080-1

    CAS  CrossRef  Google Scholar 

  157. Zhang SK, Du C, Wang ZZ, Han XG, Zhang K, Liu LH (2013) Reduced cytotoxicity of silver ions to mammalian cells at high concentration due to the formation of silver chloride. Toxicol in Vitro 27(2):739–744. doi:10.1016/j.tiv.2012.12.003

    CAS  CrossRef  Google Scholar 

  158. Andryushechkin BV, Eltsov KN, Shevlyuga VM (1999) Atomic structure of silver chloride formed on Ag(111) surface upon low temperature chlorination. Surf Sci 433:109–113. doi:10.1016/S0039-6028(99)00058-8

    CrossRef  Google Scholar 

  159. Andryushechkin BV, Eltsov KN, Shevlyuga VM, Yurov VY (1999) Direct STM observation of surface modification and growth of AgCl islands on Ag(111) upon chlorination at room temperature. Surf Sci 431(1–3):96–108. doi:10.1016/s0039-6028(99)00429-x

    CAS  CrossRef  Google Scholar 

  160. Andryushechkin BV, Eltsov KN, Shevlyuga VM, Tarducci C, Cortigiani B, Bardi U, Atrei A (1999) Epitaxial growth of AgCl layers on the Ag(100) surface. Surf Sci 421(1–2):27–32. doi:10.1016/S0039-6028(98)00801-2

    CAS  CrossRef  Google Scholar 

  161. Impellitteri CA, Tolaymat TM, Scheckel KG (2009) The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution. J Environ Qual 38(4):1528–1530. doi:10.2134/jeq2008.0390

    CAS  CrossRef  Google Scholar 

  162. Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbuhler K, Heuberger M, Nowack B (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89(7):817–824. doi:10.1016/j.chemosphere.2012.04.063

    CAS  CrossRef  Google Scholar 

  163. Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8(7):7208–7219. doi:10.1021/nn502228w

    CAS  CrossRef  Google Scholar 

  164. Rogers KR, Bradham K, Tolaymat T, Thomas DJ, Hartmann T, Ma LZ, Williams A (2012) Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid. Sci Total Environ 420:334–339. doi:10.1016/j.scitotenv.2012.01.044

    CAS  CrossRef  Google Scholar 

  165. Scheckel KG, Luxton TP, El Badawy AM, Impellitteri CA, Tolaymat TM (2010) Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension. Environ Sci Technol 44(4):1307–1312. doi:10.1021/es9032265

    CAS  CrossRef  Google Scholar 

  166. Chambers BA, Afrooz ARMN, Bae S, Aich N, Katz L, Saleh NB, Kirisits MJ (2014) Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ Sci Technol 48(1):761–769. doi:10.1021/es403969x

    CAS  CrossRef  Google Scholar 

  167. Wang G, Nishio T, Sato M, Ishikawa A, Nambara K, Nagakawa K, Matsuo Y, Niikura K, Ijiro K (2011) Inspiration from chemical photography: accelerated photoconversion of AgCl to functional silver nanoparticles mediated by DNA. Chem Commun 47(33):9426–9428. doi:10.1039/c1cc13385c

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingfu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yin, Y., Yu, S., Shen, M., Liu, J., Jiang, G. (2015). Fate and Transport of Silver Nanoparticles in the Environment. In: Liu, J., Jiang, G. (eds) Silver Nanoparticles in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46070-2_4

Download citation