Fate and Transport of Silver Nanoparticles in the Environment

  • Yongguang Yin
  • Sujuan Yu
  • Mohai Shen
  • Jingfu LiuEmail author
  • Guibin Jiang


Anthropogenic and naturally occurring silver nanoparticles (AgNPs), once released or formed in the environment, could transport, distribute, and transform in various environmental environment, which have great impacts on not only their fate but also their uptake and toxicity in the environments. In this chapter, we introduce recent model and experimental studies on the transport and distribution of AgNPs in air, aquatic, and terrestrial systems, and discuss the transformation of AgNPs in the environment including change of coating, aggregation, sedimentation, dissolution and re-reduction, sulfidation and chlorination. These studies highlight that AgNPs are highly dynamic in physical and chemical species in the environment, owning to the distinguished chemical properties of AgNPs from other nanoparticles. Additionally, the knowledge gaps in fate and transport of AgNPs and recommendations for future research are also discussed.


Humic Acid Inductively Couple Plasma Mass Spectrometry Extracellular Polymeric Substance Fulvic Acid Natural Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lowry GV, Hotze EM, Bernhardt ES, Dionysiou DD, Pedersen JA, Wiesner MR, Xing BS (2010) Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an introduction to the special series. J Environ Qual 39(6):1867–1874. doi:10.2134/jeq2010.0297CrossRefGoogle Scholar
  2. 2.
    Westerhoff P, Nowack B (2013) Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Acc Chem Res 46(3):844–853. doi:10.1021/ar300030nCrossRefGoogle Scholar
  3. 3.
    Gottschalk F, Sun TY, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300. doi:10.1016/j.envpol.2013.06.003CrossRefGoogle Scholar
  4. 4.
    Gottschalk F, Ort C, Scholz RW, Nowack B (2011) Engineered nanomaterials in rivers—exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159(12):3439–3445. doi:10.1016/j.envpol.2011.08.023CrossRefGoogle Scholar
  5. 5.
    Musee N (2011) Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol 30(9):1181–1195. doi:10.1177/0960327110391387CrossRefGoogle Scholar
  6. 6.
    Hendren CO, Badireddy AR, Casman E, Wiesner MR (2013) Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Sci Total Environ 449:418–425. doi:10.1016/j.scitotenv2013.01.078CrossRefGoogle Scholar
  7. 7.
    Tiede K, Westerhoff P, Hansen SF, Fern GJ, Hankin SM, Aitken RJ, Chaudhry Q, Boxall A (2011) Review of the risks posed to drinking water by man-made nanoparticles. Sand Hutton, Food and Environment Research Agency. Available via Accessed 15 Oct 2014
  8. 8.
    Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553CrossRefGoogle Scholar
  9. 9.
    Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637CrossRefGoogle Scholar
  10. 10.
    Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20(6):567–574. doi:10.1080/08958370701874671CrossRefGoogle Scholar
  11. 11.
    Quadros ME, Marr LC (2010) Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manage 60(7):770–781. doi:10.3155/1047–3289.60.7.770CrossRefGoogle Scholar
  12. 12.
    Park J, Kwak BK, Bae E, Lee J, Kim Y, Choi K, Yi J (2009) Characterization of exposure to silver nanoparticles in a manufacturing facility. J Nanopart Res 11(7):1705–1712. doi:10.1007/s11051-009-9725-8CrossRefGoogle Scholar
  13. 13.
    Gangwal S, Brown JS, Wang A, Houck KA, Dix DJ, Kavlock RJ, Hubal EAC (2011) Informing selection of nanomaterial concentrations for toxcast in vitro testing based on occupational exposure potential. Environ Health Persp 119(11):1539–1546. doi:10.1289/ehp.1103750CrossRefGoogle Scholar
  14. 14.
    Walser T, Schwabe F, Thöni L, De Temmerman L, Hellweg S (2013) Nanosilver emissions to the atmosphere: a new challenge? E3S Web of Conferences 1:14003Google Scholar
  15. 15.
    Jankowska E, Lukaszewska J (2013) Potential exposure to silver nanoparticles during spraying preparation for air-conditioning cleaning. Med Pr 64(1):57–67. doi:0.13075/mp.5893/2013/0007Google Scholar
  16. 16.
    Hagendorfer H, Lorenz C, Kaegi R, Sinnet B, Gehrig R, Goetz NV, Scheringer M, Ludwig C, Ulrich A (2010) Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J Nanopart Res 12(7):2481–2494. doi:10.1007/s11051-009-9816-6CrossRefGoogle Scholar
  17. 17.
    Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45(24):10713–10719. doi:10.1021/es202770mCrossRefGoogle Scholar
  18. 18.
    Lorenz C, Hagendorfer H, von Goetz N, Kaegi R, Gehrig R, Ulrich A, Scheringer M, Hungerbuhler K (2011) Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J Nanopart Res 13(8):3377–3391. doi:10.1007/s11051-011-0256-8CrossRefGoogle Scholar
  19. 19.
    Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036. doi:10.1021/es204608dCrossRefGoogle Scholar
  20. 20.
    Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Environ Sci Technol 46(13):6915–6924. doi:10.1021/es204682qCrossRefGoogle Scholar
  21. 21.
    Bone AJ, Colman BP, Gondikas AP, Newton KM, Harrold KH, Cory RM, Unrine JM, Klaine SJ, Matson CW, Di Giulio RT (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 2. Toxicity and Ag speciation. Environ Sci Technol 46(13):6925–6933. doi:10.1021/es204683mCrossRefGoogle Scholar
  22. 22.
    Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47(12):3866–3877. doi:10.1016/j.watres.2012.11.060CrossRefGoogle Scholar
  23. 23.
    Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45(9):3902–3908. doi:10.1021/es1041892CrossRefGoogle Scholar
  24. 24.
    Li LXY, Hartmann G, Doblinger M, Schuster M (2013) Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol 47(13):7317–7323. doi: 10.1021/es3041658Google Scholar
  25. 25.
    Holder AL, Vejerano EP, Zhou XZ, Marr LC (2013) Nanomaterial disposal by incineration. Environ Sci-Process Impacts 15(9):1652–1664. doi:10.1039/c3em00224aCrossRefGoogle Scholar
  26. 26.
    Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV (2014) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48(1):104–112. doi:10.1021/es403646xCrossRefGoogle Scholar
  27. 27.
    Lombi E, Donner E, Taheri S, Tavakkoli E, Jamting AK, McClure S, Naidu R, Miller BW, Scheckel KG, Vasilev K (2013) Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut 176:193–197. doi:10.1016/j.envpol.2013.01.029CrossRefGoogle Scholar
  28. 28.
    Pan B, Xing BS (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63(4):437–456. doi:10.1111/j.1365-2389.2012.01475.xCrossRefGoogle Scholar
  29. 29.
    Lin SH, Cheng YW, Bobcombe Y, Jones KL, Liu J, Wiesner MR (2011) Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis. Environ Sci Technol 45(12):5209–5215. doi:10.1021/es2002327CrossRefGoogle Scholar
  30. 30.
    Yang XY, Lin SH, Wiesner MR (2014) Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media. J Hazard Mater 264:161–168. doi:10.1016/j.jhazmat.2013.11.025CrossRefGoogle Scholar
  31. 31.
    Flory J, Kanel SR, Racz L, Impellitteri CA, Silva RG, Goltz MN (2013) Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. J Nanopart Res 15(3):1484. doi:10.1007/s11051–013-1484-xGoogle Scholar
  32. 32.
    Mittelman AM, Taghavy A, Wang YG, Abriola LM, Pennell KD (2013) Influence of dissolved oxygen on silver nanoparticle mobility and dissolution in water-saturated quartz sand. J Nanopart Res 15(7):UNSP1765. doi:10.1007/s11051-013-1765-4Google Scholar
  33. 33.
    El Badawy AM Hassan AA Scheckel KG Suidan MT Tolaymat TM (2013) Key factors controlling the transport of silver nanoparticles in porous media. Environ Sci Technol 47(9):4039–4045. doi:10.1021/es304580rCrossRefGoogle Scholar
  34. 34.
    Tian YA, Gao B, Silvera-Batista C, Ziegler KJ (2010) Transport of engineered nanoparticles in saturated porous media. J Nanopart Res 12(7):2371–2380. doi:10.1007/s11051-010-9912-7CrossRefGoogle Scholar
  35. 35.
    Neukum C, Braun A, Azzam R (2014) Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones. J Contam Hydrol 158:1–13. doi:10.1016/j.jconhyd.2013.12.002CrossRefGoogle Scholar
  36. 36.
    Ren DJ, Smith JA (2013) Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment. Environ Sci Technol 47(8):3825–3832. doi:10.1021/es4000752CrossRefGoogle Scholar
  37. 37.
    Xiao Y, Wiesner MR (2013) Transport and retention of selected engineered nanoparticles by porous media in the presence of a biofilm. Environ Sci Technol 47(5):2246–2253. doi:10.1021/es304501nCrossRefGoogle Scholar
  38. 38.
    Li Z, Hassan AA, Sahle-Demessie E, Sorial GA (2013) Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters. Water Res 47(17):6457–6466. doi:10.1016/j.watres.2013.08.026CrossRefGoogle Scholar
  39. 39.
    Mitzel MR, Tufenkji N (2014) Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. Environ Sci Technol 48(5):2715–2723. doi:10.1021/es404598vCrossRefGoogle Scholar
  40. 40.
    Whitley AR, Levard C, Oostveen E, Bertsch PM, Matocha CJ, von der Kammer F, Unrine JM (2013) Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. Environ Pollut 182:141–149. DOI:10.1016/j.envpol.2013.06.027CrossRefGoogle Scholar
  41. 41.
    Cornelis G, Doolette C, Thomas M, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J 76(3):891–902. doi:10.2136/sssaj2011.0360CrossRefGoogle Scholar
  42. 42.
    Cornelis G, Pang LP, Doolette C, Kirby JK, McLaughlin MJ (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ 463:120–130. doi:10.1016/j.scitotenv.2013.05.089CrossRefGoogle Scholar
  43. 43.
    Sagee O, Dror I, Berkowitz B (2012) Transport of silver nanoparticles (AgNPs) in soil. Chemosphere 88(5):670–675. doi:10.1016/j.chemosphere.2012.03.055CrossRefGoogle Scholar
  44. 44.
    Liang Y, Bradford SA, Simunek J, Heggen M, Vereecken H, Klumpp E (2013) Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Environ Sci Technol 47(21):12229–12237. doi:10.1021/es402046uCrossRefGoogle Scholar
  45. 45.
    Liang Y, Bradford SA, Simunek J, Vereecken H, Klumpp E (2013) Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Res 47(7):2572–2582. doi:10.1016/j.watres.2013.02.025CrossRefGoogle Scholar
  46. 46.
    Emerson HP, Hart AE, Baldwin JA, Waterhouse TC, Kitchens CL, Mefford OT, Powell BA (2014) Physical transformations of iron oxide and silver nanoparticles from an intermediate scale field transport study. J Nanopart Res 16(2):2258. doi:10.1007/s11051-014-2258–9Google Scholar
  47. 47.
    Ma XM, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061. doi:10.1016/j.scitotenv.2010.03.031CrossRefGoogle Scholar
  48. 48.
    Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498. doi:10.1021/jf104517jCrossRefGoogle Scholar
  49. 49.
    Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090. doi:10.1021/es302973yCrossRefGoogle Scholar
  50. 50.
    Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li KG, Huang Y, Chen YS, Kolmakov A, Ma XM (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7(3):323–337. doi:10.3109/17435390.2012.658094CrossRefGoogle Scholar
  51. 51.
    Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43 (24):9473–9479. doi:10.1021/es901695cCrossRefGoogle Scholar
  52. 52.
    Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309. doi:10.1016/j.ecoenv.2014.03.022CrossRefGoogle Scholar
  53. 53.
    Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499. doi:10.1016/j.chemosphere.2011.10.013CrossRefGoogle Scholar
  54. 54.
    Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67. doi:10.1016/j.ecoenv.2013.03.033CrossRefGoogle Scholar
  55. 55.
    Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013) Phytostimulation of Poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449. doi:10.1021/es4004334CrossRefGoogle Scholar
  56. 56.
    Hawthorne J, Musante C, Sinha SK, White JC (2012) Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita Pepo. Int J Phytoremediation 14(4):429–442. doi:10.1080/15226514.2011.620903CrossRefGoogle Scholar
  57. 57.
    Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47(4):651–658. doi:10.1016/j.procbio.2012.01.006CrossRefGoogle Scholar
  58. 58.
    Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44(17):6532–6549. doi:10.1021/es100598hCrossRefGoogle Scholar
  59. 59.
    Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914. doi:10.1021/es2037405CrossRefGoogle Scholar
  60. 60.
    Yu SJ, Yin YG, Chao JB, Shen MH, Liu JF (2014) Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag0 and reduction of Ag+. Environ Sci Technol 48(1):403–411. doi:10.1021/es404334aCrossRefGoogle Scholar
  61. 61.
    Li Y, Niu JF, Shang EX, Crittenden J (2014) Photochemical transformation and photoinduced toxicity reduction of silver nanoparticles in the presence of perfluorocarboxylic acids under UV irradiation. Environ Sci Technol 48(9):4946–4953. doi:10.1021/es500596aCrossRefGoogle Scholar
  62. 62.
    Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48(16):8946–8962. doi:10.1021/es502342rCrossRefGoogle Scholar
  63. 63.
    Sanchez-Cortes S, Francioso O, Ciavatta C, Garcia-Ramos JV, Gessa C (1998) pH-dependent adsorption of fractionated peat humic substances on different silver colloids studied by surface-enhanced Raman spectroscopy. J Colloid Interface Sci 198(2):308–318. doi:10.1006/jcis.1997.5293CrossRefGoogle Scholar
  64. 64.
    Lau BLT, Hockaday WC, Ikuma K, Furman O, Decho AW (2013) A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloid Surf A 435:22–27. doi:10.1016/j.colsurfa.2012.11.065CrossRefGoogle Scholar
  65. 65.
    Khan SS, Mukherjee A, Chandrasekaran N (2011) Impact of exopolysaccharides on the stability of silver nanoparticles in water. Water Res 45(16):5184–5190. doi:10.1016/j.watres.2011.07.024CrossRefGoogle Scholar
  66. 66.
    Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, Peukert W, Treuel L (2012) Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir 28(25):9673–9679. doi:10.1021/La301104aCrossRefGoogle Scholar
  67. 67.
    Ostermeyer AK, Mumuper CK, Semprini L, Radniecki T (2013) Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Environ Sci Technol 47(24):14403–14410. doi:10.1021/es4033106CrossRefGoogle Scholar
  68. 68.
    Shang L, Dorlich RM, Trouillet V, Bruns M, Nienhaus GU (2012) Ultrasmall fluorescent silver nanoclusters: protein adsorption and its effects on cellular responses. Nano Res 5(8):531–542. doi:10.1007/s12274-012-0238-xCrossRefGoogle Scholar
  69. 69.
    Wigginton NS, De Titta A, Piccapietra F, Dobias J, Nesatty VJ, Suter MJF, Bernier-Latmani R (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44(6):2163–2168. doi:10.1021/Es903187sCrossRefGoogle Scholar
  70. 70.
    Ravindran A, Singh A, Raichur AM, Chandrasekaran N, Mukherjee A (2010) Studies on interaction of colloidal Ag nanoparticles with bovine serum albumin (BSA). Colloid Surf B 76(1):32–37. doi:10.1016/j.colsurfb.2009.10.005CrossRefGoogle Scholar
  71. 71.
    Voicescu M, Ionescu S, Angelescu DG (2012) Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles. J Nanopart Res 14(10):1174. doi:10.1007/s11051-012-1174-0Google Scholar
  72. 72.
    Podila R, Chen R, Ke PC, Brown JM, Rao AM (2012) Effects of surface functional groups on the formation of nanoparticle-protein corona. Appl Phys Lett 101(26):263701. doi:10.1063/1.4772509Google Scholar
  73. 73.
    Shannahan JH, Lai XY, Ke PC, Podila R, Brown JM, Witzmann FA (2013) Silver nanoparticle protein corona composition in cell culture media. PLoS One 8(9):e74001. doi:10.1371/journal.pone.0074001Google Scholar
  74. 74.
    Gan W, Xu BL, Dai HL (2011) Activation of thiols at a silver nanoparticle surface. Angew Chem Int Ed Engl 50(29):6622–6625. doi:10.1002/anie.201101430CrossRefGoogle Scholar
  75. 75.
    Huang GG, Han XX, Hossain MK, Kitahama Y, Ozaki Y (2010) A study of glutathione molecules adsorbed on silver surfaces under different chemical environments by surface-enhanced Raman scattering in combination with the heat-induced sensing method. Appl Spectrosc 64(10):1100–1108. doi: 10.1366/000370210792973523CrossRefGoogle Scholar
  76. 76.
    Jing CY, Fang Y (2007) Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of L-cysteine on gold/silver nanoparticles. Chem Phys 332(1):27–32. doi:10.1016/j.chemphys.2006.11.019CrossRefGoogle Scholar
  77. 77.
    Bonifacio A, Dalla Marta S, Spizzo R, Cervo S, Steffan A, Colombatti A, Sergo V (2014) Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal Bioanal Chem 406(9–10):2355–2365. doi:10.1007/s00216-014-7622-1CrossRefGoogle Scholar
  78. 78.
    Wang CY, Liu CY, Wang M, Shen T (1999) Spectroscopic studies of thiocyanate in silver hydrosol and the influence of halide ions. Spectrochimca Acta A 55(5):991–998. doi:10.1016/S1386-1425(98)00240-6CrossRefGoogle Scholar
  79. 79.
    Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem-Us 86(17):3391–3395. doi:10.1021/j100214a025CrossRefGoogle Scholar
  80. 80.
    Barthelmes J, Plieth W (1995) Sers investigations on the adsorption of pyridine carboxylic-acids on silver—influence of pH and supporting electrolyte. Electrochimca Acta 40(15):2487–2490. doi:10.1016/0013-4686(95)00103-LCrossRefGoogle Scholar
  81. 81.
    Du JJ, Cui JL, Jing CY (2014) Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem Commun 50(3):347–349. doi:10.1039/c3cc46920dCrossRefGoogle Scholar
  82. 82.
    Garrell RL, Shaw KD, Krimm S (1983) Surface enhanced Raman-spectroscopy of halide-ions on colloidal silver—morphology and coverage dependence. Surf Sci 124(2–3):613–624. doi:10.1016/0039-6028(83)90815-4CrossRefGoogle Scholar
  83. 83.
    Bell SEJ, Sirimuthu NMS (2005) Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids. J Phys Chem A 109(33):7405–7410. doi:10.1021/jp052184fCrossRefGoogle Scholar
  84. 84.
    Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46(13):7037–7045. doi:10.1021/es3001757CrossRefGoogle Scholar
  85. 85.
    Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18(8):1482–1484Google Scholar
  86. 86.
    Yang Y, Gajaraj S, Wall JD, Hu ZQ (2013) A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamics. Water Res 47(10):3422–3430. doi:10.1016/j.watres.2013.03.040CrossRefGoogle Scholar
  87. 87.
    Visnapuu M, Joost U, Juganson K, Kunnis-Beres K, Kahru A, Kisand V, Ivask A (2013) Dissolution of silver nanowires and nanospheres dictates their toxicity to Escherichia coli. Biomed Res Int 2013:819252–819260. doi:10.1155/2013/819252CrossRefGoogle Scholar
  88. 88.
    Kennedy AJ, Hull MS, Bednar AJ, Goss JD, Gunter JC, Bouldin JL, Vikesland PJ, Steevens JA (2010) Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environ Sci Technol 44(24):9571–9577. doi:10.1021/es1025382CrossRefGoogle Scholar
  89. 89.
    Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275. doi:10.1021/nl301934wCrossRefGoogle Scholar
  90. 90.
    Newton KM, Puppala HL, Kitchens CL, Colvin VL, Klaine SJ (2013) Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environ Toxicol Chem 32(10):2356–2364. doi:10.1002/etc.2300CrossRefGoogle Scholar
  91. 91.
    Angel BM, Batley GE, Jarolimek CV, Rogers NJ (2013) The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93(2):359–365. doi:10.1016/j.chemosphere.2013.04.096CrossRefGoogle Scholar
  92. 92.
    Sotiriou GA, Meyer A, Knijnenburg JTN, Panke S, Pratsinis SE (2012) Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 28(45):15929–15936. doi:10.1021/la303370dCrossRefGoogle Scholar
  93. 93.
    Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47(9):4140–4146. doi:10.1021/es304023pCrossRefGoogle Scholar
  94. 94.
    Liu JY, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175. doi:10.1021/es9035557CrossRefGoogle Scholar
  95. 95.
    Liu JY, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913. doi:10.1021/nn102272nCrossRefGoogle Scholar
  96. 96.
    Zhang W, Yao Y, Sullivan N, Chen YS (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45(10):4422–4428. doi:10.1021/es104205aCrossRefGoogle Scholar
  97. 97.
    Ho CM, Wong CK, Yau SKW, Lok CN, Che CM (2011) Oxidative dissolution of silver nanoparticles by dioxygen: a kinetic and mechanistic study. Chem-Asian J 6(9):2506–2511. doi:10.1002/asia.201100034CrossRefGoogle Scholar
  98. 98.
    Ma R, Levard C, Marinakos SM, Cheng YW, Liu J, Michel FM, Brown GE, Lowry GV (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46(2):752–759. doi:10.1021/es201686jCrossRefGoogle Scholar
  99. 99.
    Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378–5386. doi:10.1021/es204531yCrossRefGoogle Scholar
  100. 100.
    Ho CM, Yau SKW, Lok CN, So MH, Che CM (2010) Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem-Asian J 5(2):285–293. doi:10.1002/asia.200900387CrossRefGoogle Scholar
  101. 101.
    He D, Garg S, Waite TD (2012) H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species. Langmuir 28(27):10266–10275. doi:10.1021/la300929gCrossRefGoogle Scholar
  102. 102.
    Yuan ZH, Chen YB, Li TT, Yu CP (2013) Reaction of silver nanoparticles in the disinfection process. Chemosphere 93(4):619–625. doi:10.1016/j.chemosphere.2013.06.010CrossRefGoogle Scholar
  103. 103.
    Maurer-Jones MA, Mousavi MPS, Chen LD, Buhlmann P, Haynes CL (2013) Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis. Chem Sci 4(6):2564–2572. doi:10.1039/c3sc50320hCrossRefGoogle Scholar
  104. 104.
    Mumper CK, Ostermeyer AK, Semprini L, Radniecki TS (2013) Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Chemosphere 93(10):2493–2498. doi:10.1016/j.chemosphere.2013.08.098CrossRefGoogle Scholar
  105. 105.
    Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45(12):5260–5266. doi:10.1021/es2007758CrossRefGoogle Scholar
  106. 106.
    Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE (2013) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47(11):5738–5745. doi:10.1021/es400396fCrossRefGoogle Scholar
  107. 107.
    Grillet N, Manchon D, Cottancin E, Bertorelle F, Bonnet C, Broyer M, Lerme J, Pellarin M (2013) Photo-oxidation of individual silver nanoparticles: a real-time tracking of optical and morphological changes. J Phys Chem C 117(5):2274–2282. doi:10.1021/jp311502hCrossRefGoogle Scholar
  108. 108.
    Tejamaya M, Romer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017. doi:10.1021/es2038596CrossRefGoogle Scholar
  109. 109.
    He D, Bligh MW, Waite TD (2013) Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. Environ Sci Technol 47(16):9148–9156. doi:10.1021/es400391aCrossRefGoogle Scholar
  110. 110.
    Cheng YW, Yin LY, Lin SH, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115(11):4425–4432. doi:10.1021/jp109789jCrossRefGoogle Scholar
  111. 111.
    Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5(11):8950–8957. doi:10.1021/nn2031319CrossRefGoogle Scholar
  112. 112.
    Shi JP, Ma CY, Xu B, Zhang HW, Yu CP (2012) Effect of light on toxicity of nanosilver to Tetrahymena pyriformis. Environ Toxicol Chem 31(7):1630–1638. doi:10.1002/etc.1864CrossRefGoogle Scholar
  113. 113.
    Pettibone JM, Gigault J, Hackley VA (2013) Discriminating the states of matter in metallic nanoparticle transformations: what are we missing? ACS Nano 7(3):2491–2499. doi:10.1021/nn3058517CrossRefGoogle Scholar
  114. 114.
    Shi JP, Xu B, Sun X, Ma CY, Yu CP, Zhang HW (2013) Light induced toxicity reduction of silver nanoparticles to Tetrahymena Pyriformis: effect of particle size. Aquat Toxicol 132:53–60. doi:10.1016/j.aquatox.2013.02.001CrossRefGoogle Scholar
  115. 115.
    Yu WL, Borkovec M (2002) Distinguishing heteroaggregation from homoaggregation in mixed binary particle suspensions by multiangle static and dynamic light scattering. J Phys Chem B 106(51):13106–13110. doi:10.1021/jp021792hCrossRefGoogle Scholar
  116. 116.
    Park JW, Oh JH, Kim WK, Lee SK (2014) Toxicity of citrate-coated silver nanoparticles differs according to method of suspension preparation. B Environ Contam Tox 93(1):53–59. doi:10.1007/s00128-014-1296-4CrossRefGoogle Scholar
  117. 117.
    Huynh KA, McCaffery JM, Chen KL (2014) Heteroaggregation reduces antimicrobial activity of silver nanoparticles: evidence for nanoparticle–cell proximity effects. Environ Sci Technol Lett 1(9):361–366. doi:10.1021/ez5002177CrossRefGoogle Scholar
  118. 118.
    El Badawy AM Luxton TP Silva RG Scheckel KG Suidan MT Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266. doi:10.1021/es902240kCrossRefGoogle Scholar
  119. 119.
    Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45(13):5564–5571. doi:10.1021/es200157hCrossRefGoogle Scholar
  120. 120.
    Li X, Lenhart JJ, Walker HW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28(2):1095–1104. doi:10.1021/la202328nCrossRefGoogle Scholar
  121. 121.
    Zook JM, Halter MD, Cleveland D, Long SE (2012) Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity. J Nanopart Res 14(10):1165. doi: 10.1007/S11051-012-1165-1Google Scholar
  122. 122.
    Khan SS, Srivatsan P, Vaishnavi N, Mukherjee A, Chandrasekaran N (2011) Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics. J Hazard Mater 192(1):299–306. doi: 10.1016/j.jhazmat.2011.05.024Google Scholar
  123. 123.
    Zhang W, Yao Y, Li KG, Huang Y, Chen YS (2011) Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159(12):3757–3762 doi:10.1016/j.envpol.2011.07.013CrossRefGoogle Scholar
  124. 124.
    Baalousha M, Nur Y, Romer I, Tejamaya M, Lead JR (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 454:119–131. doi:10.1016/j.scitotenv.2013.02.093CrossRefGoogle Scholar
  125. 125.
    Akaighe N, Depner SW, Banerjee S, Sharma VK, Sohn M (2012) The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee river humic acid/natural organic matter. Sci Total Environ 441:277–289. doi:10.1016/j.scitotenv.2012.09.055CrossRefGoogle Scholar
  126. 126.
    Skoglund S, Lowe TA, Hedberg J, Blomberg E, Wallinder IO, Wold S, Lundin M (2013) Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles. Langmuir 29(28):8882–8891. doi:10.1021/la4012873CrossRefGoogle Scholar
  127. 127.
    Zhou DX, Abdel-Fattah AI, Keller AA (2012) Clay particles destabilize engineered nanoparticles in aqueous environments. Environ Sci Technol 46(14):7520–7526. doi:10.1021/es3004427CrossRefGoogle Scholar
  128. 128.
    Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409(12):2443–2450. doi:10.1016/j.scitotenv.2011.03.020CrossRefGoogle Scholar
  129. 129.
    Piccapietra F, Sigg L, Behra R (2012) Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environ Sci Technol 46(2):818–825. doi:10.1021/Es202843hCrossRefGoogle Scholar
  130. 130.
    Quik JTK, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2014) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279. doi:10.1016/j.watres.2013.09.036CrossRefGoogle Scholar
  131. 131.
    Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JCJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43(9):3322–3328. doi:10.1021/es803315vCrossRefGoogle Scholar
  132. 132.
    Kiser MA, Ryu H, Jang HY, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44(14):4105–4114. doi:10.1016/j.watres.2010.05.036CrossRefGoogle Scholar
  133. 133.
    Sun Q, Li Y, Tang T, Yuan ZH, Yu CP (2013) Removal of silver nanoparticles by coagulation processes. J Hazard Mater 261:414–420. doi:10.1016/j.jhazmat.2013.07.066CrossRefGoogle Scholar
  134. 134.
    Stebounova LV, Guio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13(1):233–244. doi:10.1007/s11051-010-0022-3CrossRefGoogle Scholar
  135. 135.
    Lytle PE (1984) Fate and speciation of silver in publicly owned treatment works. Environ Toxicol Chem 3(1):21–30. doi:10.1002/etc.5620030104CrossRefGoogle Scholar
  136. 136.
    Anderson PR, O’Conner C, Bunker G (1997) X-ray absorption spectroscopy study of model silver compounds. Paper presented at the the 5th international conference proceedings of transport, fate and effects of silver in the environment, Hamilton, Ontario, CanadaGoogle Scholar
  137. 137.
    Choi O, Cleuenger TE, Deng BL, Surampalli RY, Ross L, Hu ZQ (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43(7):1879–1886. doi:10.1016/j.watres.2009.01.029CrossRefGoogle Scholar
  138. 138.
    Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514. doi:10.1021/es101565jCrossRefGoogle Scholar
  139. 139.
    Liu JY, Pennell KG, Hurt RH (2011) Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol 45(17):7345–7353. doi: 10.1021/es201539sCrossRefGoogle Scholar
  140. 140.
    Thalmann B, Voegelin A, Sinnet B, Morgenroth E, Kaegi R (2014) Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environ Sci Technol 48(9):4885–4892. doi:10.1021/es5003378CrossRefGoogle Scholar
  141. 141.
    Liu ZH, Zhou Y, Maszenan AM, Ng WJ, Liu Y (2013) pH-dependent transformation of Ag nanoparticles in anaerobic processes. Environ Sci Technol 47(22):12630–12631. doi:10.1021/es404514 gCrossRefGoogle Scholar
  142. 142.
    Kent R, Oser J, Vikesland PJ (2014) Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environ Sci Technol 48(15):8564–8572. doi:10.1021/es404989tCrossRefGoogle Scholar
  143. 143.
    Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE, Lowry GV (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46(13):6992–7000. doi:10.1021/es203732xCrossRefGoogle Scholar
  144. 144.
    Doolette CL, McLaughlin MJ, Kirby JK, Batstone DJ, Harris HH, Ge HQ, Cornelis G (2013) Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chem Cent J 7:46. doi:10.1186/1752-153X-7-46CrossRefGoogle Scholar
  145. 145.
    VandeVoort AR, Tappero R, Arai Y (2014) Residence time effects on phase transformation of nanosilver in reduced soils. Environ Sci Pollut R 21(13):7828–7837. doi:10.1007/s11356-014-2743-9CrossRefGoogle Scholar
  146. 146.
    Chen S, Theodorou IG, Goode AE, Gow A, Schwander S, Zhang JF, Chung KF, Tetley TD, Shaffer MS, Ryan MP, Porter AE (2013) High-resolution analytical electron microscopy reveals cell culture media-induced changes to the chemistry of silver nanowires. Environ Sci Technol 47(23):13813–13821. doi:10.1021/es403264dCrossRefGoogle Scholar
  147. 147.
    Chen S, Goode AE, Sweeney S, Theodorou IG, Thorley AJ, Ruenraroengsak P, Chang Y, Gow A, Schwander S, Skepper J, Zhang JF, Shaffer MS, Chung KF, Tetley TD, Ryan MP, Porter AE (2013) Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale 5(20):9839–9847. doi:10.1039/c3nr03205aCrossRefGoogle Scholar
  148. 148.
    Motte L, Urban J (2005) Silver clusters on silver sulfide nanocrystals: synthesis and behavior after electron beam irradiation. J Phys Chem B 109(46):21499–21501. doi:10.1021/jp0542322CrossRefGoogle Scholar
  149. 149.
    Bourret GR, Lennox RB (2011) Electrochemical synthesis of Ag(0)/Ag2S heterojunctions templated on pre-formed Ag2S nanowires. Nanoscale 3(4):1838–1844. doi:10.1039/c0nr00886aCrossRefGoogle Scholar
  150. 150.
    Di Toro DM, Mahony JD, Carbonaro RF, DeMarco T, Morrissey JC, Pablo RJ, Page JJ, Shadi TS (1997) The oxidation of silver sulfide and other heavy metal sulfides in sediments. Paper presented at the the 5th international conference proceedings of transport, fate and effects of silver in the environment, Hamilton, Ontario, CanadaGoogle Scholar
  151. 151.
    Manolopoulos H, Adams NWH, Kramer JR (1996) Oxidation of silver-bearing iron sulfides: a preliminary study. Paper presented at the the 4th international conference proceedings of transport, fate and effects of silver in the environment, Madison, WisconsinGoogle Scholar
  152. 152.
    Dale AL, Lowry GV, Casman EA (2013) Modeling nanosilver transformations in freshwater sediments. Environ Sci Technol 47(22):12920–12928. doi:10.1021/es402341tCrossRefGoogle Scholar
  153. 153.
    Liu JY, Wang ZY, Liu FD, Kane AB, Hurt RH (2012) Chemical transformations of nanosilver in biological environments. ACS Nano 6(11):9887–9899. doi:10.1021/nn303449nCrossRefGoogle Scholar
  154. 154.
    Li ZQ, Reinsch BC, Ma R, Gregory KB, Lowry GV (2010) Sulfidation eliminates bactericidal effects of silver nanoparticles to Escherichia coli. Abstr Pap Am Chem S 240Google Scholar
  155. 155.
    Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47(23):13440–13448. doi:10.1021/es403527nCrossRefGoogle Scholar
  156. 156.
    Gherrou A, Kerdjoudj H, Molinari R, Drioli E (2002) Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier. Sep Purif Technol 28(3):235–244. doi:10.1016/S1383-5866(02)00080-1CrossRefGoogle Scholar
  157. 157.
    Zhang SK, Du C, Wang ZZ, Han XG, Zhang K, Liu LH (2013) Reduced cytotoxicity of silver ions to mammalian cells at high concentration due to the formation of silver chloride. Toxicol in Vitro 27(2):739–744. doi:10.1016/j.tiv.2012.12.003CrossRefGoogle Scholar
  158. 158.
    Andryushechkin BV, Eltsov KN, Shevlyuga VM (1999) Atomic structure of silver chloride formed on Ag(111) surface upon low temperature chlorination. Surf Sci 433:109–113. doi:10.1016/S0039-6028(99)00058-8CrossRefGoogle Scholar
  159. 159.
    Andryushechkin BV, Eltsov KN, Shevlyuga VM, Yurov VY (1999) Direct STM observation of surface modification and growth of AgCl islands on Ag(111) upon chlorination at room temperature. Surf Sci 431(1–3):96–108. doi:10.1016/s0039-6028(99)00429-xCrossRefGoogle Scholar
  160. 160.
    Andryushechkin BV, Eltsov KN, Shevlyuga VM, Tarducci C, Cortigiani B, Bardi U, Atrei A (1999) Epitaxial growth of AgCl layers on the Ag(100) surface. Surf Sci 421(1–2):27–32. doi:10.1016/S0039-6028(98)00801-2CrossRefGoogle Scholar
  161. 161.
    Impellitteri CA, Tolaymat TM, Scheckel KG (2009) The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution. J Environ Qual 38(4):1528–1530. doi:10.2134/jeq2008.0390CrossRefGoogle Scholar
  162. 162.
    Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbuhler K, Heuberger M, Nowack B (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89(7):817–824. doi:10.1016/j.chemosphere.2012.04.063CrossRefGoogle Scholar
  163. 163.
    Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8(7):7208–7219. doi:10.1021/nn502228wCrossRefGoogle Scholar
  164. 164.
    Rogers KR, Bradham K, Tolaymat T, Thomas DJ, Hartmann T, Ma LZ, Williams A (2012) Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid. Sci Total Environ 420:334–339. doi:10.1016/j.scitotenv.2012.01.044CrossRefGoogle Scholar
  165. 165.
    Scheckel KG, Luxton TP, El Badawy AM, Impellitteri CA, Tolaymat TM (2010) Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension. Environ Sci Technol 44(4):1307–1312. doi:10.1021/es9032265CrossRefGoogle Scholar
  166. 166.
    Chambers BA, Afrooz ARMN, Bae S, Aich N, Katz L, Saleh NB, Kirisits MJ (2014) Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ Sci Technol 48(1):761–769. doi:10.1021/es403969xCrossRefGoogle Scholar
  167. 167.
    Wang G, Nishio T, Sato M, Ishikawa A, Nambara K, Nagakawa K, Matsuo Y, Niikura K, Ijiro K (2011) Inspiration from chemical photography: accelerated photoconversion of AgCl to functional silver nanoparticles mediated by DNA. Chem Commun 47(33):9426–9428. doi:10.1039/c1cc13385cCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yongguang Yin
    • 1
  • Sujuan Yu
    • 1
  • Mohai Shen
    • 1
  • Jingfu Liu
    • 1
    Email author
  • Guibin Jiang
    • 1
  1. 1.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijingChina

Personalised recommendations