Skip to main content

Source and Pathway of Silver Nanoparticles to the Environment

Abstract

The production and use of silver nanoparticles (AgNPs) in industrial and commercial products increased significantly in recent years. During the production, manufacturing, use and disposal of AgNP containing products, AgNPs would be released into the environment inevitably. Moreover, AgNPs could also be naturally occurred in the environment through biological and chemical reduction processes. In recent years, various chemical and biological pathways, including reduction of Ag+ by natural organic matters, plants and microorganisms, and generation of AgNPs from macroscale elemental silver objects through dissolution and reduction, were demonstrated for the occurrence of naturally occurred AgNPs. In this chapter, we introduce the occurrences of natural AgNPs in the environments and their possible formation pathways and mechanisms, and discuss the anthropogenic pathways for intentionally and unintentionally produced AgNPs and their release into the environment.

Keywords

  • Humic Acid
  • Nanoparticulate Silver
  • Fulvic Acid
  • Natural Organic Matter
  • Dissolve Organic Matter

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-46070-2_3
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-46070-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Hardcover Book
USD   99.00
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig 3.8
Fig. 3.9

References

  1. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183. doi:10.1021/es103316q

    CAS  CrossRef  Google Scholar 

  2. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155. doi:10.1039/c0em00547a

    CAS  CrossRef  Google Scholar 

  3. Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF (2012) Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem 31 (1):115–121. doi:10.1002/etc.719

    CAS  CrossRef  Google Scholar 

  4. Li LXY, Hartmann G, Doblinger M, Schuster M (2013) Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol 47(13):7317–7323. doi:10.1021/es3041658

    CAS  Google Scholar 

  5. Walser T, Schwabe F, Thöni L, De Temmerman L, Hellweg S (2013) Nanosilver emissions to the atmosphere: a new challenge? E3S Web of Conferences 1:14003. doi:http://dx.doi.org/10.1051/e3sconf/20130114003

  6. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553

    CAS  CrossRef  Google Scholar 

  7. Greffie C, Bailly L, Milesi J (2002) Supergene alteration of primary ore assemblages from low-sulfidation Au-Ag epithermal deposits at Pongkor, Indonesia, and Nazareno, Peru. Econ Geol Bull Soc 97(3):561–571. doi:10.2113/gsecongeo.97.3.561

    CAS  Google Scholar 

  8. Warmada IW, Lehmann B, Simandjuntak M (2003) Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold-silver deposit, West Java, Indonesia. Can Mineral 41:185–200. doi:10.2113/gscanmin.41.1.185

    CAS  CrossRef  Google Scholar 

  9. Leblanc M, Lbouabi M (1988) Native silver mineralization along a rodingite tectonic contact between serpentinite and quartz diorite (Bou-Azzer, Morocco). Econ Geol 83(7):1379–1391. doi:10.2113/gsecongeo.83.7.1379

    CAS  CrossRef  Google Scholar 

  10. Lu R, Mao JW, Gao JJ, Su HM, Zheng JH (2012) Geological characteristics and occurrence of silver in Xiabao Ag-Pb-Zn deposit, Lengshuikeng ore field, Jiangxi Province, East China. Acta Petrol Sin 28 (1):105–121.

    Google Scholar 

  11. Saunders JA, Unger DL, Kamenov GD, Fayek M, Hames WE, Utterback WC (2008) Genesis of middle miocene yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA. Miner Deposita 43(7):715–734. doi:10.1007/s00126-008-0201-7

    CAS  CrossRef  Google Scholar 

  12. Deditius AP, Utsunomiya S, Reich M, Kesler SE, Ewing RC, Hough R, Walshe J (2011) Trace metal nanoparticles in pyrite. Ore Geol Rev 42(1):32–46. doi:10.1016/j.oregeorev.2011.03.003

    CrossRef  Google Scholar 

  13. Reich M, Palacios C, Barra F, Chryssoulis S (2013) "Invisible" silver in chalcopyrite and bornite from the Mantos Blancos Cu deposit, northern Chile. Eur J Mineral 25(3):453–460. doi:10.1127/0935-1221/2013/0025-2287

    CAS  Google Scholar 

  14. Reich M, Chryssoulis SL, Deditius A, Palacios C, Zuniga A, Weldt M, Alvear M (2010) “Invisible” silver and gold in supergene digenite (Cu1.8S). Geochim Cosmochim Acta 74(21):6157–6173. doi:10.1016/j.gca.2010.07.026

    CAS  CrossRef  Google Scholar 

  15. Gomez-Caballero JA, Villasenor-Cabral MG, Santiago-Jacinto P, Ponce-Abad F (2010) Hypogene ba-rich todorokite and associated nanometric native silver in the san miguel tenango mining area, Zacatlan, Puebla, Mexico. Can Mineral 48(5):1237–1253. doi:10.3749/canmin.48.5.1237

    CAS  CrossRef  Google Scholar 

  16. Qi HW, Hu RZ, Zhang Q (2007) Concentration and distribution of trace elements in lignite from the Shengli coalfield, Inner Mongolia, China: Implications on origin of the associated Wulantuga Germanium Deposit. Int J Coal Geol 71(2–3):129–152. doi:10.1016/j.coal.2006.08.005.

    CAS  CrossRef  Google Scholar 

  17. Wen LS, Santschi PH, Gill GA, Paternostro CL, Lehman RD (1997) Colloidal and particulate silver in river and estuarine waters of Texas. Environ Sci Technol 31(3):723–731. doi:10.1021/es9603057

    CAS  CrossRef  Google Scholar 

  18. Akaighe N, MacCuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M, Sharma VK (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45(9):3895–3901. doi:10.1021/es103946 g

    CAS  CrossRef  Google Scholar 

  19. Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44(1):15–23. doi:10.1021/es9026248

    CAS  CrossRef  Google Scholar 

  20. Sal’nikov DS, Pogorelova AS, Makarov SV, Vashurina IY (2009) Silver ion reduction with peat fulvic acids. Russ J Appl Chem 82(4):545–548. doi:10.1134/S107042720904003X

    CrossRef  CAS  Google Scholar 

  21. Adegboyega NF, Sharma VK, Siskova K, Zboril R, Sohn M, Schultz BJ, Banerjee S (2013) Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation andinvestigation of stability. Environ Sci Technol 47(2):757–764. doi:10.1021/es302305f

    CAS  CrossRef  Google Scholar 

  22. Mahony JD, Di DM, Shadi TS, Thomas E (1999) A unique sink for silver in sediment. In: the 6th international conference proceedings of transport, fate and effects of silver, Madison, Wisconsin

    Google Scholar 

  23. Adegboyega NF, Sharma VK, Siskova KM, Vecerova R, Kolar M, Zboril R, Gardea-Torresdey JL (2014) Enhanced formation of silver nanoparticles in Ag+ -NOM-iron(II, III) systems and antibacterial activity studies. Environ Sci Technol 48(6):3228–3235. doi:10.1021/es405641r

    CAS  CrossRef  Google Scholar 

  24. Jiang J, Kappler A (2008) Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ Sci Technol 42(10):3563–3569. doi:10.1021/es7023803

    CAS  CrossRef  Google Scholar 

  25. Yin YG, Liu JF, Jiang GB (2012) Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter. ACS Nano 6(9):7910–7919. doi:10.1021/nn302293r

    CAS  CrossRef  Google Scholar 

  26. Hou WC, Stuart B, Howes R, Zepp RG (2013) Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles. Environ Sci Technol 47(14):7713–7721. doi:10.1021/es400802w

    CAS  CrossRef  Google Scholar 

  27. Maurer F, Christl I, Hoffmann M, Kretzschmar R (2012) Reduction and reoxidation of humic acid: influence on speciation of cadmium and silver. Environ Sci Technol 46(16):8808–8816. doi:10.1021/es301520s

    CAS  CrossRef  Google Scholar 

  28. Yin Y, Shen M, Zhou X, Yu S, Chao J, Liu J, Jiang G (2014) Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle. Environ Sci Technol 48(16):9366–9373. doi:10.1021/es502025e.

    CAS  CrossRef  Google Scholar 

  29. Silver (2014) http://en.wikipedia.org/wiki/Silver Accessed 21 Oct 2014

  30. Graedel TE (1992) Corrosion mechanisms for silver exposed to the atmosphere. J Electrochem Soc 139(7):1963–1970. doi:10.1149/1.2221162.

    CAS  CrossRef  Google Scholar 

  31. Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5(11):8950–8957. doi:10.1021/nn2031319.

    CAS  CrossRef  Google Scholar 

  32. Native metal (2014) http://en.wikipedia.org/wiki/Native_metal#Silver. Accessed 21 Oct 2014

  33. Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano. 8(7):7208–7219. doi:10.1021/nn502228w

    Google Scholar 

  34. O'Loughlin EJ, Kelly SD, Kemner KM, Csencsits R, Cook RE (2003) Reduction of Ag(I), Au(III), Cu(II), and Hg(II) by Fe(II)/Fe(III) hydroxysulfate green rust. Chemosphere 53(5):437–446. doi:10.1016/S0045-6535(03)00545-9

    CrossRef  CAS  Google Scholar 

  35. Ayadi S, Perca C, Legrand L (2013) New one-pot synthesis of Au and Ag nanoparticles using green rust reactive particle as a micro-reactor. Nanoscale Res Lett 8:95. doi:10.1186/1556-276X-8-95

    Google Scholar 

  36. Wang TC, Reddy KP, O’Connor C, Fan HJ, Anderson P (1993) Adsorption characteristics of Fe oxide-coated granular activated carbon: implications for silver. Paper presented at the the 1st international conference proceedings of transport, fate and effects of silver, The University of Wisconsin-Madison

    Google Scholar 

  37. DL Sedlak AA (1994) Photo-enhanced sorption of silver to bentonite. Paper presented at the 2nd International Conference on the Transport, Fate, and Effects of Silver in the Environment, Madison, WI

    Google Scholar 

  38. Konya J, Nagy NM, Foldvari M (2005) The formation and production of nano and micro particles on clays under environmental-like conditions. J Therm Anal Calorim 79(3):537–543. doi:10.1007/s10973-005-0576-y

    CAS  CrossRef  Google Scholar 

  39. Lawless D, Kapoor S, Kennepohl P, Meisel D, Serpone N (1994) Reduction and aggregation of silver ions at the surface of colloidal silica. J Phys Chem-Us 98(38):9619–9625. doi:10.1021/J100089a042

    CAS  CrossRef  Google Scholar 

  40. Vinci JC, Bilski P, Kotek R, Chignell C (2010) Controlling the formation of silver nanoparticles on silica by photochemical deposition and other means dagger. Photochem Photobiol 86(4):806–812. doi:10.1111/j.1751-1097.2010.00717.x

    CAS  CrossRef  Google Scholar 

  41. Weier E (1938) Factors affecting the reduction of silver nitrate by chloroplasts. Am J Bot 25(7):501–507. doi: 10.1149/1.2221162

    CAS  CrossRef  Google Scholar 

  42. Brown WV, Mollenhauer H, Johnson C (1962) An electron microscope study of silver nitrate reduction in leaf cells. Am J Bot 49(1):57–63. doi:10.2307/2439389

    CAS  CrossRef  Google Scholar 

  43. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361. doi:10.1021/la020835i

    CAS  CrossRef  Google Scholar 

  44. Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11(6):1453–1463. doi:10.1007/s11051-008-9533-6

    CAS  CrossRef  Google Scholar 

  45. Beattie IR, Haverkamp RG (2011) Silver and gold nanoparticles in plants: Sites for the reduction to metal. Metallomics 3(6):628–632. doi:10.1039/C1MT00044F

    CAS  CrossRef  Google Scholar 

  46. Marchiol L, Mattiello A, Poscic F, Giordano C, Musetti R (2014) In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett 9:101. doi:10.1186/1556–276X-9-101

    Google Scholar 

  47. Barwal I, Ranjan P, Kateriya S, Yadav SC (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9:56. doi:10.1186/1477–3155-9–56

    Google Scholar 

  48. Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10(4):691–695. doi:10.1007/s11051-007-9288-5

    CAS  CrossRef  Google Scholar 

  49. Leclerc S, Wilkinson KJ (2014) Bioaccumulation of nanosilver by chlamydomonas reinhardtii-nanoparticle or the free Ion? Environ Sci Technol 48 (1):358–364. doi:10.1021/es404037z

    CAS  CrossRef  Google Scholar 

  50. Merin DD, Prakash S, Bhimba BV (2010) Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac J Trop Med 3(10):797–799. doi:10.1016/S1995-7645(10)60191-5

    CAS  CrossRef  Google Scholar 

  51. Beveridge TJ, Murray RGE (1976) Uptake and retention of metals by cell-walls of Bacillus subtilis. J Bacteriol 127(3):1502–1518.

    CAS  Google Scholar 

  52. Beveridge TJ, Murray RGE (1980) Sites of metal-deposition in the cell-wall of Bacillus subtilis. J Bacteriol 141(2):876–887.

    CAS  Google Scholar 

  53. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96(24):13611–13614. doi:10.1073/pnas.96.24.13611

    CAS  CrossRef  Google Scholar 

  54. Weisener CG, Babechuk MG, Fryer BJ, Maunder C (2008) Microbial dissolution of silver jarosite: examining its trace metal behaviour in reduced environments. Geomicrobiol J 25(7–8):415–424. doi:10.1080/01490450802403073

    CAS  CrossRef  Google Scholar 

  55. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19(7):075103. doi:10.1088/0957-4484/19/7/075103

    Google Scholar 

  56. Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749. doi:10.1007/s00253-009-2032-6

    CAS  CrossRef  Google Scholar 

  57. Lin ZY, Zhou CH, Wu JM, Zhou JZ, Wang L (2005) A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochim Acta A Mol Biomol Spectrosc 61(6):1195–1200. doi:10.1016/j.saa.2004.06.041

    CrossRef  CAS  Google Scholar 

  58. Kang FX, Alvarez PJ, Zhu DQ (2014) Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ Sci Technol 48(1):316–322. doi:10.1021/Es403796x

    CAS  CrossRef  Google Scholar 

  59. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519. doi:10.1021/Nl0155274

    CAS  CrossRef  Google Scholar 

  60. Nelson Durán PDM Oswaldo L Alves Gabriel IH De Souza Elisa Esposito (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi:10.1186/1477-3155-3-8

    Google Scholar 

  61. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of enterobacteria: a novel biological approach. Process Biochem 42(5):919–923. doi:10.1016/j.procbio.2007.02.005

    CAS  CrossRef  Google Scholar 

  62. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445. doi:10.1007/s10529-006-9256-7

    CAS  CrossRef  Google Scholar 

  63. Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2010) Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloid Surf B Biointerfaces 75(1):335–341. doi:10.1016/j.colsurfb.2009.09.006

    CAS  CrossRef  Google Scholar 

  64. Diaz JM, Hansel CM, Voelker BM, Mendes CM, Andeer PF, Zhang T (2013) Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340(6137):1223–1226. doi:10.1126/science.1237331

    CAS  CrossRef  Google Scholar 

  65. Rose AL (2012) The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms. Front Microbiol 3:124. doi:10.3389/fmicb.2012.00124

    Google Scholar 

  66. Learman DR, Voelker BM, Vazquez-Rodriguez AI, Hansel CM (2011) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4(2):95–98. doi:10.1038/NGEO1055

    CAS  CrossRef  Google Scholar 

  67. Hansel CM, Zeiner CA, Santelli CM, Webb SM (2012) Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc Natl Acad Sci U S A 109(31):12621–12625. doi:10.1073/pnas.1203885109

    CAS  CrossRef  Google Scholar 

  68. Li HP, Daniel B, Creeley D, Grandbois R, Zhang SJ, Xu C, Ho YF, Schwehr KA, Kaplan DI, Santschi PH, Hansel CM, Yeager CM (2014) Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation. Appl Environ Microbiol 80(9):2693–2699. doi:10.1128/AEM.00400-14

    CrossRef  CAS  Google Scholar 

  69. Jones AM, Garg S, He D, Pham AN, Waite TD (2011) Superoxide-mediated formation and charging of silver nanoparticles. Environ Sci Technol 45(4):1428–1434. doi:10.1021/es103757c

    CAS  CrossRef  Google Scholar 

  70. Gautam S, Dubey P, Gupta MN (2013) A facile and green ultrasonic-assisted synthesis of BSA conjugated silver nanoparticles. Colloid Surf B Biointerfaces 102:879–883. doi:10.1016/j.colsurfb.2012.10.007

    CAS  CrossRef  Google Scholar 

  71. Lee KJ, Park SH, Govarthanan M, Hwang PH, Seo YS, Cho M, Lee WH, Lee JY, Kamala-Kannan S, Oh BT (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131. doi:10.1016/j.matlet.2013.04.076

    CAS  CrossRef  Google Scholar 

  72. Juganson K, Mortimer M, Kasemets K, Kahru A (2012) Tetrahymena thermophila converts toxic silver ions to less toxic silver nanoparticles. Toxicol Lett 211:S206–S206. doi:10.1016/j.toxlet.2012.03.737

    CrossRef  Google Scholar 

  73. El-Said WA, Cho HY, Yea CH, Choi JW (2014) Synthesis of metal nanoparticles inside living human cells based on the intracellular formation process. Adv Mater 26(6):910–918. doi:10.1002/adma.201303699

    CAS  CrossRef  Google Scholar 

  74. Kannan N, Mukunthan KS, Balaji S (2011) A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. Colloid Surf B Biointerfaces 86(2):378–383. doi:10.1016/j.colsurfb.2011.04.024

    Google Scholar 

  75. Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A (2013) Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8(3):e59140. doi:10.1371/journal.pone.0059140

    Google Scholar 

  76. Zaki S, El Kady MF, Abd-El-Haleem D (2011) Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater Res Bull 46(10):1571–1576. doi:10.1016/j.materresbull.2011.06.025

    CAS  CrossRef  Google Scholar 

  77. Malhotra A, Dolma K, Kaur N, Rathore YS, Ashish, Mayilraj S, Choudhury AR (2013) Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas. Bioresour Technol 142:727–731. doi:10.1016/j.biortech.2013.05.109

    CAS  CrossRef  Google Scholar 

  78. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloid Surf B Biointerfaces 77(2):257–262. doi:10.1016/j.colsurfb.2010.02.007

    CAS  CrossRef  Google Scholar 

  79. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloid Surf B Biointerfaces 65(1):150–153. doi:10.1016/j.colsurfb.2008.02.018

    CAS  CrossRef  Google Scholar 

  80. Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed-Nanotechnol 5(4):452–456. doi:10.1016/j.nano.2009.01.012

    CAS  CrossRef  Google Scholar 

  81. Banu AN, Balasubramanian C, Moorthi PV (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(1):311–316. doi:10.1007/s00436-013-3656-0

    CrossRef  Google Scholar 

  82. Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP (2012) Effect of biosynthesized silver nanoparticles on staphylococcus aureus biofilm quenching and prevention of biofilm formation. Nano-Micro Lett 4(1):34–39. doi:10.3786/nml.v4i1.p34–39

    CrossRef  Google Scholar 

  83. Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807. doi:10.1016/j.procbio.2011.06.008

    CAS  CrossRef  Google Scholar 

  84. Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp casei. J Chem Technol Biotechnol 87(7):932–937. doi:10.1002/Jctb.3702

    CAS  CrossRef  Google Scholar 

  85. Babu MMG, Gunasekaran R (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloid Surf B Biointerfaces 74 (1):191–195. doi:10.1016/j.colsurfb.2009.07.016

    CAS  CrossRef  Google Scholar 

  86. Saravanan M, Vemu AK, Bank SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloid Surf B 88(1):325–331. doi:10.1016/j.colsurfb.2011.07.009

    CAS  CrossRef  Google Scholar 

  87. Suresh AK, Pelletier DA, Wang W, Moon JW, Gu BH, Mortensen NP, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2010) Silver nanocrystallites: Biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ Sci Technol 44(13):5210–5215. doi:10.1021/es903684r

    CAS  CrossRef  Google Scholar 

  88. Kalpana D, Lee YS (2013) Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme Microb Technol 52(3):151–156. doi:10.1016/j.enzmictec.2012.12.006

    CAS  CrossRef  Google Scholar 

  89. Srivastava P, Braganca J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17(5):821–831. doi:10.1007/s00792-013-0563-3

    CAS  CrossRef  Google Scholar 

  90. Zaki S, Etarahony M, Elkady M, Abd-El-Haleem D (2014) The use of bioflocculant and bioflocculant-producing bacillus mojavensis strain 32A to synthesize silver nanoparticles. J Nanomater:431089. doi:10.1155/2014/431089

    Google Scholar 

  91. Sneha K, Sathishkumar M, Mao J, Kwak IS, Yun YS (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng J 162(3):989–996. doi:10.1016/j.cej.2010.07.006

    CAS  CrossRef  Google Scholar 

  92. Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, Marcato PD, Rai M (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6(4):376–380. doi:10.2174/157341310791658919

    CAS  CrossRef  Google Scholar 

  93. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed-Nanotechnol 6(1):103–109. doi:10.1016/j.nano.2009.04.006

    CAS  CrossRef  Google Scholar 

  94. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418. doi:10.1016/j.matlet.2006.07.042

    CAS  CrossRef  Google Scholar 

  95. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147. doi:10.1016/j.saa.2013.05.030

    CAS  CrossRef  Google Scholar 

  96. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine-UK 5(1):33–40. doi:10.2217/Nnm.09.77

    CAS  CrossRef  Google Scholar 

  97. Huang WD, Yan JJ, Wang Y, Hou CL, Dai TC, Wang ZM (2013) Biosynthesis of Silver Nanoparticles by Septoria apii and Trichoderma koningii. Chin J Chem 31(4):529–533. doi:10.1002/cjoc.201201138

    CAS  CrossRef  Google Scholar 

  98. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloid Surf B Biointerfaces 53(1):55–59. doi:10.1016/j.colsurfb.2006.07.014

    CAS  CrossRef  Google Scholar 

  99. Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl. 2011:546074 doi:10.1155/2011/546074

    Google Scholar 

  100. Jebali A, Ramezani F, Kazemi B (2011) Biosynthesis of silver nanoparticles by Geotricum sp. J Clust Sci 22(2):225–232. doi:10.1007/s10876-011-0375-5

    CAS  CrossRef  Google Scholar 

  101. Qian YQ, Yu HM, He D, Yang H, Wang WT, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36(11):1613–1619. doi:10.1007/s00449-013-0937-z

    CAS  CrossRef  Google Scholar 

  102. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloid Surface B Biointerfaces 83(1):42–48. doi:10.1016/j.colsurfb.2010.10.035

    CAS  CrossRef  Google Scholar 

  103. Prakasham RS, Kumar BS, Kumar YS, Shankar GG (2012) Characterization of silver nanoparticles dynthesized by using marine isolate streptomyces albidoflavus. J Microbiol Biotechnol 22(5):614–621. doi:10.4014/jmb.1107.07013

    CAS  CrossRef  Google Scholar 

  104. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloid Surf B Biointerfaces 68(1):88–92. doi:10.1016/j.colsurfb.2008.09.022

    CAS  CrossRef  Google Scholar 

  105. Hamedi S, Shojaosadati S, Shokrollahzadeh S, Hashemi-Najafabadi S (2014) Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 30(2):693–704. doi:10.1007/s11274-013-1417-y

    CAS  CrossRef  Google Scholar 

  106. Bfilainsa KC, D'Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloid Surf B Biointerfaces 47(2):160–164. doi:10.1016/j.colsurfb.2005.11.026

    CrossRef  CAS  Google Scholar 

  107. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B Biointerfaces 28(4):313–318. doi:10.1016/S0927-7765(02)00174-1

    CAS  CrossRef  Google Scholar 

  108. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170. doi:10.1016/j.materresbull.2007.06.020

    CAS  CrossRef  Google Scholar 

  109. Narayanan KB, Park HH, Sakthivel N (2013) Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 116:485–490. doi:10.1016/j.saa.2013.07.066

    CAS  CrossRef  Google Scholar 

  110. Saravanana M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloid Surf B Biointerfaces 77(2):214–218. doi:10.1016/j.colsurfb.2010.01.026

    CrossRef  CAS  Google Scholar 

  111. Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles-An effect of temperature on the size of particles. Colloid Surf B Biointerfaces 74(1):123–126. doi:10.1016/j.colsurfb.2009.07.002

    CrossRef  CAS  Google Scholar 

  112. Li GQ, He D, Qian YQ, Guan BY, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13(1):466–476. doi:10.3390/Ijms13010466

    CAS  Google Scholar 

  113. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine-Nanotechnol 5(4):382–386. doi:10.1016/j.nano.2009.06.005

    CAS  CrossRef  Google Scholar 

  114. Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanoparticle Res 13(8):3129–3137. doi:10.1007/s11051-010-0208-08

    CAS  CrossRef  Google Scholar 

  115. Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831. doi:10.1007/s00436-011-2328-1

    CrossRef  Google Scholar 

  116. Binupriya AR, Sathishkumar M, Yun SI (2010) Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. viridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Ind Eng Chem Res 49(2):852–858. doi:10.1021/Ie9014183

    CAS  CrossRef  Google Scholar 

  117. Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanoparticle Res 14(5):860. doi:10.1007/S11051-012-0860-2

    Google Scholar 

  118. Kirthi AV, Rahuman AA, Jayaseelan C, Karthik L, Marimuthu S, Santhoshkumar T, Venkatesan J, Kim SK, Kumar G, Kumar SRS, Rao KVB (2012) Novel approach to synthesis silver nanoparticles using plant pathogenic fungi, Puccinia graminis. Mater Lett 81:69–72. doi:10.1016/j.matlet.2012.04.103

    CAS  CrossRef  Google Scholar 

  119. Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013:796018. doi:10.1155/2013/796018

    Google Scholar 

  120. Gaikwad SC, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai M, Duran N (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Brazil Chem Soc 24(12):1974–1982. doi:10.5935/0103-5053.20130247

    CAS  Google Scholar 

  121. Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao KVB (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37(2):261–267. doi:10.1007/s00449-013-0994-3

    CAS  CrossRef  Google Scholar 

  122. Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl Biochem Biotechnol 165(1):221–234. doi:10.1007/s12010-011-9245-8

    CAS  CrossRef  Google Scholar 

  123. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloid Surf B Biointerfaces 71(1):133–137. doi:10.1016/j.colsurfb.2009.01.016

    CAS  CrossRef  Google Scholar 

  124. Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Biomed Res Int. 2013:287638 doi:10.1155/2013/287638

    Google Scholar 

  125. El-Naggar NE, Abdelwahed NAM, Darwesh OMM (2014) Fabrication of biogenic antimicrobial silver nanoparticles by Streptomyces aegyptia NEAE 102 as eco-friendly nanofactory. J Microbiol Biotechnol 24(4):453–464. doi:10.4014/jmb.1310.10095

    CAS  CrossRef  Google Scholar 

  126. Prakasham RS, Kumar BS, Kumar YS, Kumar KP (2014) Production and characterization of protein encapsulated silver nanoparticles by marine isolate Streptomyces parvulus SSNP11. Indian J Microbiol 54(3):329–336. doi:10.1007/s12088-014-0452-1

    CAS  CrossRef  Google Scholar 

  127. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637

    CAS  CrossRef  Google Scholar 

  128. Agency USEP (2012) U. S. Nanomaterial case study: nanoscale silver in disinfectant spray (Final report). Washington, DC

    Google Scholar 

  129. Yu SJ, Yin YG, Liu JF (2013) Silver nanoparticles in the environment. Environ Sci-Process Impacts 15(1):78–92. doi:10.1039/C2EM30595J

    CrossRef  Google Scholar 

  130. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158(9):2900–2905. doi:10.1016/j.envpol.2010.06.009

    CAS  CrossRef  Google Scholar 

  131. Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409. doi:10.1016/j.scitotenv.2007.10.010

    CAS  CrossRef  Google Scholar 

  132. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139. doi:10.1021/es7032718

    CAS  CrossRef  Google Scholar 

  133. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43(21):8113–8118. doi: 10.1021/es9018332

    CAS  CrossRef  Google Scholar 

  134. Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbuhler K, Heuberger M, Nowack B (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89(7):817–824. doi:10.1016/j.chemosphere.2012.04.063

    CAS  CrossRef  Google Scholar 

  135. Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8. doi:10.1186/1743-8977-7-8

    Google Scholar 

  136. Farkas J, Peter H, Christian P, Urrea JAG, Hassellov M, Tuoriniemi J, Gustafsson S, Olsson E, Hylland K, Thomas KV (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37(6):1057–1062. doi:10.1016/j.envint.2011.03.006

    CAS  CrossRef  Google Scholar 

  137. Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI, Brewer T, Davis J, Petersen EJ, Wood L (2012) Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci Total Environ 421:267–272. doi:10.1016/j.scitotenv.2012.01.025

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingfu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yin, Y., Yu, S., Yang, X., Liu, J., Jiang, G. (2015). Source and Pathway of Silver Nanoparticles to the Environment. In: Liu, J., Jiang, G. (eds) Silver Nanoparticles in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46070-2_3

Download citation