Skip to main content

Molecular Catalysts and Organometallics for Water Oxidation

  • Chapter
  • 1410 Accesses

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Water can be used as a cheap and renewable source of electrons and protons to make nonfossil fuel-based chemical energy carriers for a sustainable power supply. However, water oxidation is an intricate chemical process and an energy-intensive reaction involving the removal of four electrons with the release of four protons at the same time. Inside the thylakoid membrane in plant leaves is embedded a manganese-calcium molecular cluster in natural photosystem II (PS-II), which represents an excellent model for designing an artificial equivalent of the photosynthesis for light-to-fuel conversion via water splitting. Inspired by the natural PS-II, the scientific community has been striving hard during the last two decades to develop a bio-inspired catalytic system for water oxidation. However, a truly biomimetic catalytic system matching the performance of photosystem for efficient water splitting operating with four consecutive proton-coupled electron transfer (PCET) steps to generate oxygen and hydrogen for hundred thousands of cycles at high rate is yet to be demonstrated. In this chapter, we provide an insight regarding the biomimetic approaches to make molecular and organometallic water oxidation complexes that have been investigated recently in homogeneous solution catalysis using chemical oxidants or as surface-immobilized heterogeneous species for electro-assisted catalytic systems. After comparing their catalytic activities and stabilities, an overview of the mechanistic aspects is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Joya KS, Joya YF, Ocakoglu K et al (2013) Water splitting catalysis and solar fuel devices: artificial leaf on the move. Angew Chem Int Ed 52:10426–10437

    Article  Google Scholar 

  2. McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    Article  Google Scholar 

  3. Joya KS, de Groot HJM (2014) Artificial leaf goes simpler and more efficient for solar fuel generation. ChemSusChem 7:73–76

    Article  Google Scholar 

  4. Najafpour MM, Ehrenberg T, Wiechen M et al (2010) Calcium manganese(III) oxides (CaMn2O4.xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Ed 49:2233–2237

    Article  Google Scholar 

  5. Vallés-Pardo JL, Guijt MC, Iannuzzi M, Joya KS et al (2012) Ab-initio molecular dynamics study of water oxidation reaction pathways in mono-Ru catalysts. ChemPhysChem 13:140–146

    Article  Google Scholar 

  6. Young KJ, Martini LA, Milot RL et al (2012) Light-driven water oxidation for solar fuels. Coord Chem Rev 256:2503–2520

    Article  Google Scholar 

  7. Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344

    Article  Google Scholar 

  8. Wada T, Tsuge K, Tanaka K (2001) Syntheses and redox properties of bis(hydroxoruthenium) complexes with quinone and bipyridine ligands. Water-oxidation catalysis. Inorg Chem 40:329–337

    Article  Google Scholar 

  9. Joya KS, de Groot HJM (2012) Biomimetic molecular water splitting catalysts for hydrogen generation. Int J Hydrog Energy 37:8787–8799

    Article  Google Scholar 

  10. Joya KS, Vallés-Pardo JL, Joya YF et al (2013) Molecular catalytic assemblies for electro-driven water splitting. ChemPlusChem 78:35–47

    Article  Google Scholar 

  11. Joya KS (2011) Molecular catalytic system for efficient water splitting. Wöhrmann Printing Press, Zutphen, The Netherlands

    Google Scholar 

  12. Cao R, Wenzhen Laia W, Du P (2012) Catalytic water oxidation at single metal sites. Energy Environ Sci 5:8134–8157

    Article  Google Scholar 

  13. Wasylenko DJ, Ganesamoorthy C, Henderson MA et al (2010) Electronic modification of the [RuII(tpy)(bpy)(OH2)]2+ scaffold: effects on catalytic water oxidation. J Am Chem Soc 132:16094–16106

    Article  Google Scholar 

  14. Deng Z, Tseng H-W, Zong R et al (2008) Preparation and study of a family of dinuclear Ru(II) complexes that catalyze the decomposition of water. Inorg Chem 47:1835–1848

    Article  Google Scholar 

  15. Schley ND, Blakemore JD, Subbaiyan NK et al (2011) Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. J Am Chem Soc 133:10473–10481

    Article  Google Scholar 

  16. Joya KS, Joya YF, de Groot HJM (2014) Ni-based electrocatalyst for water oxidation developed in-situ in a HCO3 /CO2 system at near-neutral pH. Adv Energy Mater. doi:10.1002/aenm.201301929

    Google Scholar 

  17. Hurst JK (2005) Water oxidation catalyzed by dimeric μ-oxo bridged ruthenium diimine complexes. Coord Chem Rev 249:313–328

    Article  Google Scholar 

  18. Yamazaki H, Shouji A, Kajita M et al (2010) Electrocatalytic and photocatalytic water oxidation to dioxygen based on metal complexes. Coord Chem Rev 254:2483–2491

    Article  Google Scholar 

  19. Calvin M, Cooper SR (1974) Solar energy by photosynthesis: manganese complex photolysis. Science 185:376

    Google Scholar 

  20. Limburg B, Bouwman E, Bonnet S (2012) Molecular water oxidation catalysts based on transition metals and their decomposition pathways. Coord Chem Rev 256:1451–1467

    Article  Google Scholar 

  21. Ruettinger WF, Campana C, Dismukes GC (1997) Synthesis and characterization of Mn4O4L6 complexes with cubane-like core structure: A new class of models of the active site of the photosynthetic water oxidase. J Am Chem Soc 119:6670–6671

    Article  Google Scholar 

  22. Limburg J, Vrettos JS, Liable-Sands LM et al (1999) A functional model for O–O bond formation by the O2-evolving complex in photosystem II. Science 283:1524–1527

    Article  Google Scholar 

  23. Poulsen AK, Rompel A, McKenzie CJ (2005) Water oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of photosystem II. Angew Chem Int Ed 44:6916–6920

    Article  Google Scholar 

  24. Karlsson EA, Lee B-L, Åkermark T et al (2011) Photosensitized water oxidation by use of a bioinspired manganese catalyst. Angew Chem Int Ed 50:11715–11718

    Article  Google Scholar 

  25. Gersten SW, Samuels GJ, Meyer TJ (1982) Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J Am Chem Soc 104:4029–4032

    Article  Google Scholar 

  26. Lebeau EL, Adeyemi SA, Meyer TJ (1998) Water oxidation by [(tpy)(H2O)2RuIIIORuIII(H2O)2(tpy)]4+. Inorg Chem 37:6476–6484

    Article  Google Scholar 

  27. Sens C, Romero I, Rodrıguez M et al (2005) A new Ru complex capable of catalytically oxidizing water to molecular dioxygen. J Am Chem Soc 126:7798–7799

    Article  Google Scholar 

  28. Duan L, Bozoglian F, Mandal S et al (2012) A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat Chem 4:418–423

    Article  Google Scholar 

  29. Fillol JL, Codolà Z, Garcia-Bosch I et al (2011) Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat Chem 3:807–813

    Article  Google Scholar 

  30. McDaniel ND, Coughlin FJ, Tinker LL et al (2008) Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J Am Chem Soc 130:210–217

    Article  Google Scholar 

  31. Blakemore JD, Schley ND, Balcells D et al (2010) Half-Sandwich iridium complexes for homogeneous water-oxidation catalysis. J Am Chem Soc 132:16017–16029

    Article  Google Scholar 

  32. Stracke JJ, Finke RG (2011) Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10−: Identification of heterogeneous CoOx as the dominant catalyst. J Am Chem Soc 133:14872–14875

    Article  Google Scholar 

  33. Concepcion JJ, Jurss JW, Hoertz PG et al (2009) Catalytic and surface-electrocatalytic water oxidation by redox mediator–catalyst assemblies. Angew Chem Int Ed 48:9473–9476

    Article  Google Scholar 

  34. Joya KS, Subbaiyan NK, D'Souza F et al (2012) Surface-immobilized single-site iridium complexes for electrocatalytic water splitting. Angew Chem Int Ed 51:9601–9605

    Article  Google Scholar 

  35. Barnett SM, Goldberg KI, Mayer JM (2012) A soluble copper–bipyridine water-oxidation electrocatalyst. Nat Chem 4:498–502

    Article  Google Scholar 

  36. Howells AR, Sankarraj A, Shannon C (2004) Diruthenium-substituted polyoxometalate as an electrocatalyst for oxygen generation. J Am Chem Soc 126:12258–12259

    Article  Google Scholar 

  37. Toma FM, Sartorel A, Iurlo M et al (2010) Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat Chem 2:826–831

    Article  Google Scholar 

  38. Dau H, Limberg C, Reier T et al (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761

    Article  Google Scholar 

  39. Rossmeisl J, Dimitrievski K, Siegbahn P et al (2007) Comparing electrochemical and biological water splitting. J Phys Chem C 111:18821–18823

    Article  Google Scholar 

  40. Concepcion JJ, Tsai M-K, Muckerman JT et al (2010) Mechanism of water oxidation by single-site ruthenium complex catalysts. J Am Chem Soc 132:1545–1557

    Article  Google Scholar 

  41. Herrero C, Lassalle-Kaiser B, Leibl W et al (2008) Artificial systems related to light driven electron transfer processes in PSII. Coord Chem Rev 252:456–468

    Article  Google Scholar 

  42. Joya KS, de Groot HJM (2013) Electrochemical in situ surface enhanced Raman spectroscopic characterization of a trinuclear ruthenium complex, Ru-red. J Raman Spectrosc 44:1195–1199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Saleem Joya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Joya, K.S. (2015). Molecular Catalysts and Organometallics for Water Oxidation. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics