Skip to main content

4 Pezizomycotina: Lecanoromycetes

  • Chapter
Book cover Systematics and Evolution

Part of the book series: The Mycota ((MYCOTA,volume 7B))

Abstract

Lecanoromycetes is the class of Ascomycota with the largest number of lichen-forming fungi. Members of this class are important components of most terrestrial ecosystems and occur in various habitats and on different substrates, from tropical to polar regions. Morphological, anatomical, and chemical characters have traditionally been used to classify orders, families, and genera within Lecanoromycetes. In the last two decades, molecular phylogenies have shown that traditional classification systems were not always consistent with the evolutionary history of this fungal class, resulting in changes in the delimitation of orders and families. Here, we revisit the taxonomic value of the main characters traditionally used for classification in light of current molecular phylogenies. The current delimitation of the 14 orders of Lecanoromycetes is also discussed, and recent changes in classification are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology, and identification. Phycologia 6:127–160

    CAS  Google Scholar 

  • Ahmadjian V (1969) Lichen synthesis. Österr Bot Z 116:306–311

    Google Scholar 

  • Ahmadjian V (1993) The lichen photobiont—what can it tell us about lichen systematics? Bryologist 96:310–313

    Google Scholar 

  • Amo de Paz G, Cubas P, Divakar PK, Lumbsch HT, Crespo A (2011) Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS One 6:e28161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andersen HL, Ekman S (2004) Phylogeny of the Micareaceae inferred from nrSSU DNA sequences. Lichenologist 36:27–35

    Google Scholar 

  • Andersen HL, Ekman S (2005) Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences. Mycol Res 109:21–30

    CAS  PubMed  Google Scholar 

  • Aptroot A (2001) Lichenized and saprobic fungal biodiversity of a single Elaeocarpus tree in Papua New Guinea, with the report of 200 species of ascomycetes associated with one tree. Fungal Divers 6:1–11

    Google Scholar 

  • Aptroot A, Sipman HJM (1997) Diversity of lichenized fungi in the tropics. In: Hyde KD (ed) Biodiversity of tropical microfungi. University Press, Hong Kong, pp 93–106

    Google Scholar 

  • Armaleo D, Zhang Y, Cheung S (2008) Light might regulate divergently depside and depsidone accumulation in the lichen Parmotrema hypotropum by affecting thallus temperature and water potential. Mycologia 100:565–576

    CAS  PubMed  Google Scholar 

  • Armaleo D, Sun XM, Culberson C (2011) Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia 103:741–754

    CAS  PubMed  Google Scholar 

  • Arup U, Ekman S, Grube M, Mattsson JE, Wedin M (2007) The sister group relation of Parmeliaceae (Lecanorales, Ascomycota). Mycologia 99:42–49

    CAS  PubMed  Google Scholar 

  • Asahina Y, Shibata S (1954) Chemistry of lichen substances. Japan Society for the Promotion of Science, Ueno, Tokyo, Japan

    Google Scholar 

  • Bailey RH (1976) Ecological aspects of dispersal and establishment in lichens. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 215–247

    Google Scholar 

  • Baloch E, Lücking R, Lumbsch HT, Wedin M (2010) Major clades and phylogenetic relationships between lichenized and non-lichenized lineages in Ostropales (Ascomycota: Lecanoromycetes). Taxon 59:1483–1494

    Google Scholar 

  • Barr ME (1983) The ascomycete connection. Mycologia 75:1–13

    Google Scholar 

  • Bellemère A (1977) L'appareil apical de l'asque chez quelques Discomycètes: étude ultrastructurale comparative. Rev Mycol 40:3–19

    Google Scholar 

  • Bellemère A (1994) Asci and ascospores in ascomycete systematics. In: Hawksworth DL (ed) Ascomycete systematics. Problems and perspectives in the nineties, NATO advanced science institutes series. Plenum Press, New York, pp 111–126

    Google Scholar 

  • Bellemère A, Hafellner J (1982) L'ultrastructure des asques du genre Dactylospora (Discomycètes) et son intérêt taxonomique. Cryptogamie Mycol 3:71–93

    Google Scholar 

  • Bellemère A, Letrouit-Galinou MA (1987) Differentiation of lichen asci including dehiscence and sporogenesis: an ultrastructural survey. In: Peveling E (ed) Progress and problems in lichenology in the eighties, vol 25, Bibliotheca Lichenologica. J. Cramer, Berlin, Stuttgart, pp 137–161

    Google Scholar 

  • Ben-Shaul Y, Paran N, Galun M (1969) The ultrastructure of the association between phycobiont and mycobiont in three ecotypes of the lichen Caloplaca aurantia var. aurantia. J Microsc 8:415–422

    Google Scholar 

  • Berbee ML (1996) Loculoascomycete origins and evolution of filamentous ascomycete morphology based on 18S rRNA gene sequence data. Mol Biol Evol 13:462–470

    CAS  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. Can J Bot 71:1114–1127

    Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol VII, part B. Systematics and evolution. Springer, Berlin, Heidelberg, New York, pp 229–245

    Google Scholar 

  • Bessey CE (1907) A synopsis of plant phyla. Univ Nebr Stud 7(4):275–373

    Google Scholar 

  • Blanco O, Crespo A, Elix JA, Hawksworth DL, Lumbsch HT (2004) A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon 53:959–975

    Google Scholar 

  • Blanco O, Crespo A, Divakar PK, Elix JA, Lumbsch HT (2005) Molecular phylogeny of parmotremoid lichens (Ascomycota, Parmeliaceae). Mycologia 97:150–159

    CAS  PubMed  Google Scholar 

  • Blanco O, Crespo A, Ree RH, Lumbsch HT (2006) Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Mol Phylogenet Evol 39:52–69

    CAS  PubMed  Google Scholar 

  • Brodo IM (1973) The lichen genus Coccotrema in North America. Bryologist 76:260–270

    Google Scholar 

  • Brodo IM, Sloan NA (2004) Lichen zonation on coastal rocks in Gwaii Haanas National Park Reserve, Haida Gwaii (Queen Charlotte Islands), British Columbia. Can Field Nat 118:405–424

    Google Scholar 

  • Brodo IM, Duran Sharnoff S, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven, London

    Google Scholar 

  • Buschbom J, Barker D (2006) Evolutionary history of vegetative reproduction in Porpidia s.l. (lichen-forming Ascomcota). Syst Biol 55:471–484

    PubMed  Google Scholar 

  • Buschbom J, Mueller G (2004) Resolving evolutionary relationships in the lichen-forming genus Porpidia and related allies (Porpidiaceae, Ascomycota). Mol Phylogenet Evol 32:66–82

    PubMed  Google Scholar 

  • Buschbom J, Mueller GM (2006) Testing “species pair” hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Mol Biol Evol 23:574–586

    CAS  PubMed  Google Scholar 

  • Bylin A, Arnerup J, Högberg N, Thor G (2007) A phylogenetic study of Fuscideaceae using mtSSU rDNA. In: Frisch A, Lange U, Staiger B (eds) Lichenologische Nebenstunden. Contributions to lichen taxonomy and ecology in honour of Klaus Kalb, vol 96, Bibliotheca Lichenologica. J. Cramer, Berlin, Stuttgart, pp 49–60

    Google Scholar 

  • Chadefaud M (1942) Étude d'asques: II. Structure et anatomie comparée de l'appareil apical chez divers Disco- et Pyrénomycètes. Rev Mycol 7:57–88

    Google Scholar 

  • Chadefaud M (1960) Les végétaux non vasculaires (Cryptogamie). In: Chadefaud M, Emberger L (eds) Traité de botanique systématique. Masson, Paris, pp 524–529, 543–545 and 639–640

    Google Scholar 

  • Chadefaud M (1973) Les asques et la systematique des Ascomycetes. Bull Soc Mycol France 89:127–170

    Google Scholar 

  • Chadefaud M, Letrouit-Galinou MA, Favre MC (1963) Sur l'évolution des asques du type archaeascé chez les Discomycètes de l'ordre des Lécanorales. Compt Rend Acad Sci Paris 257:4003–4005

    Google Scholar 

  • Chadefaud M, Letrouit-Galinou MA, Favre MC (1967) Sur l'origine phylogénétique et l'évolution des ascomycètes des lichens. Bull Soc Bot Fr Mém 115:79–111

    Google Scholar 

  • Choisy M (1954) Catalogue des lichens de la region lyonnaise. Édition Paul Chevalier, Paris

    Google Scholar 

  • Clauzade G, Roux C (1984) Les genres Aspicilia Massal. et Bellemerea Hafellner et Roux. Bull Soc Bot Centre-Ouest 15:127–141

    Google Scholar 

  • Clauzade G, Roux C (1985) Likenoj de okcidenta Europo. Ilustrita determinlibro. Bull Soc Bot Centre-Ouest 7:1–893

    Google Scholar 

  • Collins CR, Farrar JF (1978) Structural resistances to mass transfer in the lichen Xanthoria parietina. New Phytol 81:71–83

    Google Scholar 

  • Coppins BJ, Wolseley P (2002) Lichens of tropical forests. In: Watling R, Frankland JC, Ainsworth AM, Isaac S, Robinson CH (eds) Tropical mycology, vol 2, Micromycetes. CABI Publishing, Wallingford, UK, pp 113–131

    Google Scholar 

  • Crespo A, Lumbsch HT, Mattsson JE, Blanco O, Divakar PK, Articus K, Wiklund E, Bawingan PA, Wedin M (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Mol Phylogenet Evol 44:812–824

    CAS  PubMed  Google Scholar 

  • Crespo A, Kauff F, Divakar PK, del Prado R, Pérez-Ortega S, de Paz GA, Ferencova Z, Blanco O, Roca-Valiente B, Núñez-Zapata J, Cubas P, Argüello A, Elix JA, Esslinger TL, Hawksworth DL, Millanes AM, Molina MC, Wedin M, Ahti T, Aptroot A, Barreno E, Bungartz F, Calvelo S, Candan M, Cole MJ, Ertz D, Goffinet B, Lindblom L, Lücking R, Lutzoni F, Mattsson JE, Messuti MI, Miadlikowska J, Piercey-Normore MD, Rico VJ, Sipman H, Schmitt I, Spribille T, Thell A, Thor G, Upreti DK, Lumbsch HT (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59:1735–1753

    Google Scholar 

  • Culberson WL, Culberson CF (1981) The genera Cetrariastrum and Concamerella (Parmeliaceae): a chemosynthetic synopsis. Bryologist 84:273–314

    Google Scholar 

  • Culberson CF, Elix JA (1989) Lichen substances. In: Harborne JB (ed) Methods in plant biochemistry, vol 1, Plant phenolics. Academic, London, San Diego, pp 509–535

    Google Scholar 

  • Dal Grande F, Widmer I, Wagner HH, Scheidegger C (2012) Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol Ecol 21:3159–3172

    CAS  PubMed  Google Scholar 

  • David JC, Hawksworth DL (1991) Validation of six family names of lichenized ascomycetes. Systema Ascomycetum 10:13–18

    Google Scholar 

  • Davydov DA (2007) Approaches to a classification of the family Umbilicariaceae (lichenised Ascomycota) by anatomical and morphological characters. Turczaninowia 10:51–57

    Google Scholar 

  • Du Rietz GE (1924) Die Soredien und Isidien der Flechten. Svensk Bot Tidskr 18:371–396

    Google Scholar 

  • Duvigneaud P (1955) Les Stereocaulon des hautes montagnes du Kivu. Essai anatomo-systématique. Lejeunia Mem 14:1–144

    Google Scholar 

  • Ekman S (2001) Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycol Res 105:783–797

    CAS  Google Scholar 

  • Ekman S, Tønsberg T (2002) Most species of Lepraria and Leproloma form a monophyletic group closely related to Stereocaulon. Mycol Res 106:1262–1276

    Google Scholar 

  • Ekman S, Wedin M (2000) The phylogeny of the families Lecanoraceae and Bacidiaceae (lichenized Ascomycota) inferred from nuclear SSU rDNA sequences. Plant Biol 2:350–360

    CAS  Google Scholar 

  • Ekman S, Andersen HL, Wedin M (2008) The limitations of ancestral state reconstruction and the evolution of the ascus in the Lecanorales (lichenized Ascomycota). Syst Biol 57:141–156

    CAS  PubMed  Google Scholar 

  • Elix JA (1993) Progress in the generic delimitation of Parmelia sensu lato lichens (Ascomycotina: Parmeliaceae) and a synoptic key to the Parmeliaceae. Bryologist 96:359–383

    Google Scholar 

  • Elix JA, Hale ME (1987) Canomaculina, Myelochroa, Parmelinella, Parmelinopsis and Parmotremopsis, five new genera in the Parmeliaceae (lichenized Ascomycotina). Mycotaxon 29:233–244

    Google Scholar 

  • Elix JA, Stocker-Wörgötter E (2008) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, UK, pp 104–133

    Google Scholar 

  • Elix JA, Johnston J, Verdon D (1986) Canoparmelia, Paraparmelia and Relicinopsis, three new genera in the Parmeliaceae (lichenized Ascomycotina). Mycotaxon 27:271–282

    Google Scholar 

  • Eriksson OE (1982) The families of bitunicate Ascomycetes. Opera Bot 60:1–209

    Google Scholar 

  • Eriksson OE (2006) Outline of Ascomycota—2006. Myconet 12:1–82

    Google Scholar 

  • Eriksson OE, Hawksworth DL (1986) Outline of the ascomycetes—1986. Systema Ascomycetum 5:185–324

    Google Scholar 

  • Eriksson OE, Hawksworth DL (1993) Outline of the ascomycetes—1993. Systema Ascomycetum 12:51–257

    Google Scholar 

  • Eriksson OE, Winka K (1997) Supraordinal taxa of Ascomycota. Myconet 1:1–16

    Google Scholar 

  • Eriksson OE, Baral HO, Currah RS, Hansen K, Kurtzman CP, Rambold G, Laessøe T (2003) Outline of Ascomycota—2003. Myconet 9:1–103

    Google Scholar 

  • Fedrowitz K, Kaasalainen U, Rikkinen J (2011) Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape. Bryologist 114:220–230

    Google Scholar 

  • Fernandez-Mendoza F, Domasche S, Garcia MA, Jordan P, Martin MP, Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20:1208–1232

    CAS  PubMed  Google Scholar 

  • Fletcher A (1980) Marine and maritime lichens of rocky shores: their ecology, physiology and biological interactions. In: Price JH, Irvine DEG, Farnham WF (eds) The shore environment, vol 2, Ecosystems. Systematics Association special volume no. 17B. Academic, London, New York, pp 789–842

    Google Scholar 

  • Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191

    Google Scholar 

  • Friedl T, Büdel B (2008) Photobionts. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, UK, pp 7–26

    Google Scholar 

  • Frisch A, Kalb K, Grube M (2006) Molecular phylogeny of the Thelotremataceae. A study based on Bayesian analysis of mitochondrial 16S rDNA gene data. In: Wirth V (ed) Contributions towards a new systematics of the lichen family Thelotremataceae, vol 92, Bibliotheca Lichenologica. J. Cramer, Berlin, Stuttgart, pp 517–539

    Google Scholar 

  • Galun M (1988) The fungus-alga relation. In: Galun M (ed) CRC handbook of lichenology, vol I. CRC Press, Boca Raton, FL, pp 147–158

    Google Scholar 

  • Galun M, Paran N, Ben-Shaul Y (1970) An ultrastructural study of the fungus alga association in Lecanora radiosa growing under different environmental conditions. J Microsc 8:801–806

    Google Scholar 

  • Gaya E, Högnabba F, Holguin Á, Molnar K, Fernández-Brime S, Stenroos S, Arup U, Søchting U, van den Boom P, Lücking R, Sipman HJM, Lutzoni F (2012) Implementing a cumulative supermatrix approach for a comprehensive phylogenetic study of the Teloschistales (Pezizomycotina, Ascomycota). Mol Phylogenet Evol 63:374–387

    PubMed  Google Scholar 

  • Gazis R, Miadlikowska J, Lutzoni F, Arnold AE, Chaverri P (2012) Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes. Mol Phylogenet Evol 65:294–304

    CAS  PubMed  Google Scholar 

  • Geitler L (1934) Beiträge zur Kenntnis der Flechtensymbiose IV, V. Arch Protistenk 82:51–85

    Google Scholar 

  • Geitler L (1963) Über Haustorien bei Flechten und über Myrmecia biatorellae in Psora globifera. Österr Bot Z 110:270–280

    Google Scholar 

  • Gierl C, Kalb K (1993) Die Flechtengattung Dibaeis. Eine Übersicht über die rosafrüchtigen Arten von Baeomyces sens. lat. nebst Anmerkungen zu Phyllobaeis gen. nov. Herzogia 9:593–645

    Google Scholar 

  • Gilbert OL (1990) The lichen flora of urban wasteland. Lichenologist 22:87–101

    Google Scholar 

  • Gilbert OL (1996) The lichen vegetation of chalk and limestone streams in Britain. Lichenologist 28:145–159

    Google Scholar 

  • Gilbert OL, Giavarini VJ (1997) The lichen vegetation of acid watercourses in England. Lichenologist 29:347–367

    Google Scholar 

  • Gilenstam G (1969) Studies in the lichen genus Conotrema. Arch Bot 7:149–179

    Google Scholar 

  • Golubkova NS (1988) The lichen family Acarosporaceae in the U.S.S.R. Komarov Botanical Institute, Academy of Sciences of the U.S.S.R., Leningrad

    Google Scholar 

  • Green TGA, Schroeter B, Sancho LG (1999) Plant life in Antarctica. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, New York, Basel, pp 495–543

    Google Scholar 

  • Grube M, Arup U (2001) Molecular and morphological evolution in the Physciaceae (Lecanorales, lichenized Ascomycotina), with special emphasis on the genus Rinodina. Lichenologist 33:63–72

    Google Scholar 

  • Grube M, Hawksworth DL (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol Res 111:1116–1132

    PubMed  Google Scholar 

  • Grube M, Baloch E, Lumbsch HT (2004) The phylogeny of Porinaceae (Ostropomycetidae) suggests a neotenic origin of perithecia in Lecanoromycetes. Mycol Res 108:1111–1118

    CAS  PubMed  Google Scholar 

  • Gueidan C, Ruibal C, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gueidan C, Ruibal C, de Hoog GS, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996

    PubMed  Google Scholar 

  • Hafellner J (1984) Studien in Richtung einer naturlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. In: Hertel H, Oberwinkler F (eds) Beitrage zur Lichenologie. Festscrift J. Poelt, vol 79, Beiheft zur Nova Hedwigia. J. Cramer, Vaduz, pp 241–371

    Google Scholar 

  • Hafellner J (1988) Principles of classification and main taxonomic groups. In: Galun M (ed) CRC handbook of lichenology, vol III. CRC Press, Boca Raton, FL

    Google Scholar 

  • Hafellner J (1994) Problems in Lecanorales systematics. In: Hawksworth DL (ed) Ascomycete systematics. Problems and perspectives in the nineties, NATO advanced science institutes series. Plenum, New York, pp 315–320

    Google Scholar 

  • Hafellner J (1995) Towards a better circumscription of the Acarosporaceae (lichenized Ascomycotina, Lecanorales). Cryptog Bot 5:99–104

    Google Scholar 

  • Hale ME (1974) Bulbothrix, Parmelina, Relicina, and Xanthoparmelia, four new genera in the Parmeliaceae. Phytologia 28:479–490

    Google Scholar 

  • Hale ME (1984a) An historical review of the genus concept in lichenology. In: Hertel H, Oberwinkler F (eds) Beitrage zur Lichenologie. Festschrift J. Poelt, vol 79, Beiheft zur Nova Hedwigia. Vaduz, J. Cramer, pp 11–23

    Google Scholar 

  • Hale ME (1984b) Flavopunctelia, a new genus in the Parmeliaceae (Ascomycotina). Mycotaxon 20:681–682

    Google Scholar 

  • Hawksworth DL, Eriksson OE (1986) The names of accepted orders of ascomycetes. Systema Ascomycetum 5:175–184

    Google Scholar 

  • Harris RC (1990) Some Florida lichens. Author, Bronx, NY

    Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    CAS  PubMed  Google Scholar 

  • Helms G, Friedl T, Rambold G (2003) Phylogenetic relationships of the Physciaceae inferred from rDNA sequence data and selected phenotypic characters. Mycologia 95:1078–1099

    CAS  PubMed  Google Scholar 

  • Henskens FL, Green TGA, Wilkins A (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Ann Bot 110:555–563

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henssen A (1976) Studies in the developmental morphology of lichenized Ascomycetes. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 107–138

    Google Scholar 

  • Henssen A (1981) Hyphomorpha als phycobiont in Flechten. Plant Syst Evol 137:139–143

    Google Scholar 

  • Henssen A (1985) Hertella, a new lichen genus in the Peltigerales from the Southern Hemisphere. Mycotaxon 22:381–397

    Google Scholar 

  • Henssen A, Jahns HM (1974) Lichenes. Georg Thieme, Stuttgart

    Google Scholar 

  • Henssen A, Keuck G, Renner B, Vobis G (1981) The lecanoralean centrum. In: Reynolds DR (ed) Ascomycete systematics. The Luttrellian concept. Springer, New York, Heidelberg, Berlin, pp 138–234

    Google Scholar 

  • Hertel H (1970) Trapeliaceae—eine neue Flechtenfamilie. Vortr Gesamtgeb Bot 4:171–185

    Google Scholar 

  • Hertel H, Rambold G (1985) Lecidea sect. Armeniacae: lecideoide Arten der Flechtengattungen Lecanora und Tephromela (Lecanorales). Bot Jarb Syst 107:469–501

    Google Scholar 

  • Hestmark G (1997) Growth from the centre in an umbilicate lichen. Lichenologist 29:379–383

    Google Scholar 

  • Hestmark G, Miadlikowska J, Kauff F, Fraker E, Molnar K, Lutzoni F (2011) Single origin and subsequent diversification of central Andean endemic Umbilicaria species. Mycologia 103:45–56

    PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Hodkinson BP, Lendemer JC (2011) The orders of Ostropomycetidae (Lecanoromycetes, Ascomycota): recognition of Sarrameanales and Trapeliales with a request to retain Pertusariales over Agyriales. Phytologia 93:407–412

    Google Scholar 

  • Hofstetter V, Miadlikowska J, Kauff F, Lutzoni F (2007) Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes (Ascomycota). Mol Phylogenet Evol 44:412–426

    CAS  PubMed  Google Scholar 

  • Honegger R (1978) The ascus apex in lichenized fungi. I: The Lecanora-, Peltigera and Teloschistes-types. Lichenologist 10:47–67

    Google Scholar 

  • Honegger R (1980) The ascus apex in lichenized fungi. II: The Rhizocarpon-type. Lichenologist 12:157–172

    Google Scholar 

  • Honegger R (1982a) Ascus structure and function, ascospore delimitation, and phycobiont cell wall types associated with the Lecanorales (lichenized ascomycetes). J Hattori Bot Lab 52:417–429

    Google Scholar 

  • Honegger R (1982b) The ascus apex in lichenized fungi. III: The Pertusaria-type. Lichenologist 14:205–217

    Google Scholar 

  • Honegger R (1983) The ascus apex in lichenized fungi. IV: Baeomyces and Icmadophila in comparison with Cladonia (Lecanorales) and the non-lichenized Leotia (Helotiales). Lichenologist 15:57–71

    Google Scholar 

  • Honegger R (1984a) Scanning electron microscopy of the contact site of conidia and trichogynes in Cladonia furcata. Lichenologist 16:11–19

    Google Scholar 

  • Honegger R (1984b) Ultrastructural studies on conidiomata, conidiophores, and conidiogenous cells in six lichen-forming ascomycetes. Can J Bot 62:2081–2093

    Google Scholar 

  • Honegger R (2008) Morphogenesis. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 69–93

    Google Scholar 

  • Honegger R, Edwards D, Axe L (2013) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol 197:164–275

    Google Scholar 

  • Huneck S (2001) New results on the chemistry of lichen substances. In: Fortschritte der Chemie organischer Naturstoffe, vol 81. Springer, Vienna

    Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin, Heidelberg

    Google Scholar 

  • Ihlen PG, Ekman S (2002) Outline of phylogeny and character evolution in Rhizocarpon (Rhizocarpaceae, lichenized Ascomycota) based on nuclear ITS and mitochondrial SSU ribosomal DNA sequences. Biol J Linn Soc 77:535–546

    Google Scholar 

  • Jaag O (1933) Coccomyxa Schmidle, Monographie einer Algengattung. Beitr Kryptogamenfl Schweiz 8:1–132

    Google Scholar 

  • Jahns HM (1970) Untersuchungen zur Entwicklungsgeschichte der Cladoniaceen. Nova Hedwigia 20:1–177

    Google Scholar 

  • James TY, Kauff F, Schoch C, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch T, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge K, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Buck WR, Cole MS, Diederich P, Printzen C, Schmitt I, Schultz M, Yahr R, Zavarzin A, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of the fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Google Scholar 

  • Janex-Favre MC (1977) Le developpement et la structure des pycnides de l'Umbilicaria cinereorufescens. Rev Bryol Lichenol 43:1–18

    Google Scholar 

  • Janex-Favre MC (1982) Le developpement et la structure des pycnides du lichen Parmelia acetabulum. Cryptogamie Bryol L 3:337–349

    Google Scholar 

  • Johnston J (2001) Baeomycetaceae. In: McCarthy PM (ed) Flora of Australia, vol 58A, Lichens 3. ABRS/CSIRO Australia, Melbourne, pp 14–16

    Google Scholar 

  • Kantvilas G (1996) A new byssoid lichen genus from Tasmania. Lichenologist 28:229–237

    Google Scholar 

  • Kantvilas G (2004) Sarrameanaceae. In: McCarthy PM, Mallett K (eds) Flora of Australia, vol 56A, Lichens 4. ABRS/CSIRO Australia, Melbourne, pp 74–77

    Google Scholar 

  • Kantvilas G, Vězda A (1996) The lichen genus Sarrameana. Nord J Bot 16:325–333

    Google Scholar 

  • Kärnefelt I (1989) Morphology and phylogeny in the Teloschistales. Cryptog Bot 1:147–203

    Google Scholar 

  • Kärnefelt I, Thell A (1992) The evaluation of characters in lichenized families, exemplified with the alectorioid and some parmelioid genera. Plant Syst Evol 180:181–204

    Google Scholar 

  • Kauff F, Büdel B (2005) Ascoma ontogeny and apothecial anatomy in the Gyalectaceae (Ostropales, Ascomycota) support the re-establishment of the Coenogoniaceae. Bryologist 108:272–281

    Google Scholar 

  • Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships. Mol Phylogenet Evol 25:138–156

    CAS  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Bisby's dictionary of the fungi, 9th edn. CAB International, Wallingford, UK

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby's dictionary of the fungi, 10th edn. CAB International, Wallingford, UK

    Google Scholar 

  • Krog H (1982) Evolutionary trends in foliose and fruticose lichens of the Parmeliaceae. J Hattori Bot Lab 52:303–311

    Google Scholar 

  • Kroken S, Taylor JW (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93:38–53

    CAS  Google Scholar 

  • Lamb IM (1977) A conspectus of the lichen genus Stereocaulon (Schreb.) Hoffm. J Hattori Bot Lab 43:191–355

    Google Scholar 

  • Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122

    CAS  Google Scholar 

  • Lawrey JD (1989) Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. Bryologist 92:326–328

    CAS  Google Scholar 

  • Lawrey JD, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106:81–120

    Google Scholar 

  • Leavitt SD, Johnson LA, Goward T, St Clair LL (2011a) Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol Phylogenet Evol 60:317–332

    PubMed  Google Scholar 

  • Leavitt SD, Johnson LA, St Clair LL (2011b) Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus Xanthoparmelia (Parmeliaceae, Ascomycota) in western North America. Am J Bot 98:175–188

    PubMed  Google Scholar 

  • Letrouit-Galinou MA (1972) Études sur le Lobaria laetevirens. II: Le développement des pycnides. Bull Soc Bot Fr 119:477–485

    Google Scholar 

  • Letrouit-Galinou MA (1973a) Les asques des lichens et le type archaeascé. Bryologist 76:30–47

    Google Scholar 

  • Letrouit-Galinou MA (1973b) Les pycnospores et les pycnides du Gyalecta carneolutea (Turn.) Oliv. Bull Soc Bot Fr 120:373–384

    Google Scholar 

  • Letrouit-Galinou MA, Bellemère A (1989) Ascomatal development in lichens: a review. Cryptogamie Bryol L 10:189–233

    Google Scholar 

  • Letrouit-Galinou MA, Lallement R (1977) Le développement des pycnides du discolichen Buellia canescens (Dicks.) D.N. Ann Sci Nat Bot Biol 18:119–134

    Google Scholar 

  • Lindemuth R, Wirtz N, Lumbsch HT (2001) Phylogenetic analysis of nuclear and mitochondrial rDNA sequences supports the view that loculoascomycetes (Ascomycota) are not monophyletic. Mycol Res 105:1176–1181

    CAS  Google Scholar 

  • Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci U S A 101:4507–4512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Louwhoff SHJJ (2009) Umbilicariaceae. In: McCarthy PM (ed) Flora of Australia, vol 57, Lichens 5. ABRS and CSIRO Publishing, Canberra, Melbourne, pp 553–562

    Google Scholar 

  • Lücking R (2008) Foliicolous lichenized fungi, Flora Neotropica Monograph 103. Organization for Flora Neotropica and The New York Botanical Garden Press, Bronx, NY

    Google Scholar 

  • Lücking R, Stuart BL, Lumbsch HT (2004) Phylogenetic relationships of Gomphillaceae and Asterothyriaceae: evidence from a combined Bayesian analysis of nuclear and mitochondrial sequences. Mycologia 96:283–294

    PubMed  Google Scholar 

  • Lücking R, Huhndorf S, Pfister DH, Rivas Plata E, Lumbsch HT (2009a) Fungi evolved right on track. Mycologia 101:810–822

    PubMed  Google Scholar 

  • Lücking R, Lawrey JD, Sikaroodi M, Gillevet PM, Chaves JL, Sipman HJM, Bungartz F (2009b) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am J Bot 96:1409–1418

    PubMed  Google Scholar 

  • Lumbsch HT (1997) Systematic studies in the suborder Agyriineae (Lecanorales). J Hattori Bot Lab 83:1–73

    Google Scholar 

  • Lumbsch HT (1998a) Taxonomic use of metabolic data in lichen-forming fungi. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 345–387

    Google Scholar 

  • Lumbsch HT (1998b) The use of metabolic data in lichenology at the species and subspecific levels. Lichenologist 30:357–367

    Google Scholar 

  • Lumbsch HT, Huhndorf SM (2007a) Whatever happened to the pyrenomycetes and loculoascomycetes? Mycol Res 111:1064–1074

    PubMed  Google Scholar 

  • Lumbsch HT, Huhndorf SM (2007b) Outline of Ascomycota 2007. Myconet 13:1–58

    Google Scholar 

  • Lumbsch HT, Huhndorf SM (2010) Myconet, vol 14. Part one. Outline of Ascomycota—2009. Part two. Notes on ascomycete systematics. Nos. 4751–5113. Fieldiana Life Earth Sci 1:1–64

    Google Scholar 

  • Lumbsch HT, Feige GB, Schmitz KE (1994) Systematic studies in the Pertusariales. I: Megasporaceae, a new family of lichenized Ascomycetes. J Hattori Bot Lab 75:295–304

    Google Scholar 

  • Lumbsch HT, Lunke T, Feige GB, Huneck S (1995) Anamylopsoraceae—a new family of lichenized ascomycetes with stipitate apothecia (Lecanorales: Agyriineae). Plant Syst Evol 198:275–286

    Google Scholar 

  • Lumbsch HT, Schmitt I, Döring H, Wedin M (2001a) Molecular systematics supports the recognition of an additional order of Ascomycota: the Agyriales (Ascomycota). Mycol Res 105:16–23

    Google Scholar 

  • Lumbsch HT, Schmitt I, Döring H, Wedin M (2001b) ITS sequence data suggest variability of ascus types and support ontogenetic characters as phylogenetic discriminators in the Agyriales (Ascomycota). Mycol Res 105:265–274

    CAS  Google Scholar 

  • Lumbsch HT, Wirtz N, Lindemuth R, Schmitt I (2002) Higher level phylogenetic relationships of euascomycetes (Pezizomycotina) inferred from a combined analysis of nuclear and mitochondrial sequence data. Mycol Prog 1:57–70

    Google Scholar 

  • Lumbsch HT, Schmitt I, Palice Z, Wiklund E, Ekman S, Wedin M (2004) Supraordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian analysis of combined nuclear and mitochondrial sequences. Mol Phylogenet Evol 31:822–832

    CAS  PubMed  Google Scholar 

  • Lumbsch HT, Del Prado R, Kantvilas G (2005) Gregorella, a new genus to accommodate Moelleropsis humida and a molecular phylogeny of Arctomiaceae. Lichenologist 37:291–302

    Google Scholar 

  • Lumbsch HT, Archer AW, Elix JA (2007a) A new species of Loxospora (lichenized Ascomycota: Sarrameanaceae) from Australia. Lichenologist 39:509–517

    Google Scholar 

  • Lumbsch HT, Schmitt I, Lücking R, Wiklund E, Wedin M (2007b) The phylogenetic placement of Ostropales within Lecanoromycetes (Ascomycota) revisited. Mycol Res 111:257–267

    PubMed  Google Scholar 

  • Lumbsch HT, Schmitt I, Mangold A, Wedin M (2007c) Ascus types are phylogenetically misleading in Trapeliaceae and Agyriaceae (Ostropomycetidae, Ascomycota). Mycol Res 111:1133–1141

    CAS  PubMed  Google Scholar 

  • Lumbsch HT, Hipp AL, Divakar PK, Blanco O, Crespo A (2008a) Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evol Biol 8:257

    PubMed Central  PubMed  Google Scholar 

  • Lumbsch HT, Nelsen MP, Lücking R (2008b) The phylogenetic position of Haematommataceae (Lecanorales, Ascomycota), with notes on secondary chemistry and species delimitation. Nova Hedwigia 86:104–114

    Google Scholar 

  • Luttrell ES (1951) Taxonomy of pyrenomycetes. University of Missouri Studies 24, Curators of the University of Missouri, Columbia, MO, pp 1–120

    Google Scholar 

  • Luttrell ES (1955) The ascostromatic Ascomycetes. Mycologia 47:511–532

    Google Scholar 

  • Lutzoni F, Pagel M (1997) Accelerated evolution as a consequence of transitions to mutualism. Proc Natl Acad Sci U S A 94:11422–11427

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    CAS  PubMed  Google Scholar 

  • Lutzoni F, Kauff F, Cox C, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lücking R, Lumbsch T, O'Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    PubMed  Google Scholar 

  • Mägdefrau K (1957) Flechten und Moose in baltischen Bernstein. Ber Deut Bot Ges 70:433–435

    Google Scholar 

  • Magnusson AH (1936) Acarosporaceae und Thelocarpaceae. In: Zahlbruckner A (ed) Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, band 9. Akademische Verlagsgesellschaft M.B.H., Leipzig, pp 1–318

    Google Scholar 

  • Mangold A, Martín MP, Lücking R, Lumbsch HT (2008) Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota: Ostropales). Taxon 57:476–486

    Google Scholar 

  • Matsumoto T, Deguchi H (1999) Pycnidial structures and genus concept in the Thelotremataceae. Bryologist 102:86–91

    Google Scholar 

  • Mattsson JE, Lumbsch HT (1989) The use of the species pair concept in lichen taxonomy. Taxon 38:238–241

    Google Scholar 

  • Mattsson JE, Wedin M (1999) A re-assessment of the family Alectoriaceae. Lichenologist 31:431–440

    Google Scholar 

  • McCarthy PM (2003) Catalogue of Australian Lichens. Flora of Australia Supplementary Series, 19, Australian Biological Resources Study, Canberra

    Google Scholar 

  • Miadlikowska J, Lutzoni F (2004) Phylogenetic classification of Peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. Am J Bot 91:449–464

    CAS  PubMed  Google Scholar 

  • Miadlikowska J, Kauff F, Hofstetter V, Fraker E, Grube M, Hafellner J, Reeb V, Hodkinson BP, Kukwa M, Lücking R, Hestmark G, Otalora MG, Rauhut A, Büdel B, Scheidegger C, Timdal E, Stenroos S, Brodo IM, Perlmutter GB, Ertz D, Diederich P, Lendemer JC, May PF, Schoch C, Arnold AE, Gueidan C, Tripp E, Yahr R, Robertson C, Lutzoni F (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98:1088–1103

    CAS  PubMed  Google Scholar 

  • Millot M, Di Meo F, Tomasi S, Boustie J, Trouillas P (2012) Photoprotective capacities of lichen metabolites: a joint theoretical and experimental study. J Photochem Photobiol B 111:17–26

    CAS  PubMed  Google Scholar 

  • Möller A (1888) Über die sogenannten Spermatien der Ascomyceten. Bot Zeitung 46:421–425

    Google Scholar 

  • Muggia L, Nelson P, Wheeler T, Yakovchenko S, Tønsberg T, Spribille T (2011) Convergent evolution of a symbiotic duet: the case of the lichen genus Polychidium (Peltigerales, Ascomycota). Am J Bot 98:1647–1656

    PubMed  Google Scholar 

  • Müller J (1880) Lichenologische Beiträge, X. Flora 63:17–24, 40–45

    Google Scholar 

  • Müller J (1882) Lichenologische Beiträge, XV. Flora 65:291–306, 313–322, 326–337, 381–386, 397–402

    Google Scholar 

  • Myllys L, Lohtander K, Tehler A (2001) β-Tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia 93:335–343

    CAS  Google Scholar 

  • Myllys L, Hognabba F, Lohtander K, Thell A, Stenroos S, Hyvonen J (2005) Phylogenetic relationships of Stereocaulaceae based on simultaneous analysis of beta-tubulin, GAPDH and SSU rDNA sequences. Taxon 54:605–618

    Google Scholar 

  • Nannfeldt JA (1932) Studien über die Morphologie und Systematik der nicht-lichenisierten inoperculaten Discomyceten. Nov Act Reg Soc Sci Nat Cherbourg 3:161–202

    Google Scholar 

  • Nash TH III (2008) Introduction. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, UK, pp 1–8

    Google Scholar 

  • Nelsen MP, Gargas A (2009) Assessing clonality and chemotype monophyly in Thamnolia (Icmadophilaceae). Bryologist 112:42–53

    Google Scholar 

  • Nelsen MP, Chavez N, Sackett-Hermann E, Thell A, Randlane T, Divakar PK, Rico VJ, Lumbsch HT (2011) The cetrarioid core group revisited (Lecanorales: Parmeliaceae). Lichenologist 43:537–551

    Google Scholar 

  • Nimis PL (1998) A critical appraisal of modern generic concepts in lichenology. Lichenologist 30:427–438

    Google Scholar 

  • Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Studies in polar research. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Padovan AC, Sanson GF, Brunstein A, Briones MR (2005) Fungi evolution revisited: application of the penalized likelihood method to a Bayesian fungal phylogeny provides a new perspective on phylogenetic relationships and divergence dates of Ascomycota groups. J Mol Evol 60:726–735

    CAS  PubMed  Google Scholar 

  • Palmqvist K, Dahlman L, Jonsson A, Nash TH III (2008) The carbon economy of lichens. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, UK, pp 182–215

    Google Scholar 

  • Pérez FL (1997) Geoecology of erratic lichens of Xanthoparmelia vagans in an equatorial Andean paramo. Plant Ecol 129:11–28

    Google Scholar 

  • Platt JL, Spatafora JW (1999) A re-examination of generic concepts of baeomycetoid lichens based on phylogenetic analyses of nuclear SSU and LSU ribosomal DNA. Lichenologist 31:409–418

    Google Scholar 

  • Plessl A (1963) Über die Beziehungen von Haustorienstypus and Organisationshöhe bei Flechten. Österr Bot Z 110:194–269

    Google Scholar 

  • Poelt J (1970) Das Konzept der Artenpaare bei den Flechten. Vortr Gesamtgeb Bot 4:187–198

    Google Scholar 

  • Poelt J (1972) Die taxonomische Behandlung von Artenpaaren bei den Flechten. Bot Not 125:77–81

    Google Scholar 

  • Poelt J (1973) Systematic evaluation of morphological characters. In: Ahmadjian V, Hale ME (eds) The lichens. Academic, New York, London, pp 91–115, and 599–632

    Google Scholar 

  • Poelt J (1987) On reductions of morphological structures in lichens. In: Peveling E (ed) Progress and problems in lichenology in the eighties, vol 25, Bibliotheca Lichenologica. J. Cramer, Berlin, Stuttgart, pp 35–45

    Google Scholar 

  • Poinar GO, Peterson EB Jr, Platt JL (2000) Fossil Parmelia in new world amber. Lichenologist 32:263–269

    Google Scholar 

  • Poulsen RS, Schmitt I, Søchting U, Lumbsch HT (2001) Molecular and morphological studies on the subantarctic genus Orceolina (Agyriaceae). Lichenologist 33:323–329

    Google Scholar 

  • Printzen C (2010) Lichen systematics: the role of morphological and molecular data to reconstruct phylogenetic relationships. Prog Bot 71:233–278

    Google Scholar 

  • Rambold G, Triebel D (1992) The inter-lecanoralean associations, vol 48, Bibliotheca Lichenologica. J Cramer, Berlin

    Google Scholar 

  • Rambold G, Triebel D, Hertel H (1993) Icmadophilaceae, a new family in the Leotiales. In: Feige GB, Lumbsch HT (eds) Phytochemistry and chemotaxonomy of lichenized Ascomycetes—a festschrift in honour of Siegfried Huneck, Bibliotheca Lichenologica. J. Cramer, Berlin, Stuttgart, pp 217–240

    Google Scholar 

  • Rambold G, Friedl T, Beck A (1998) Photobionts in lichens: possible indicators of phylogenetic relationships? Bryologist 101:392–397

    Google Scholar 

  • Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060

    CAS  PubMed  Google Scholar 

  • Reynolds DR (1989) The bitunicate ascus paradigm. Bot Rev 55:1–52

    Google Scholar 

  • Rikkinen J (2002) Cyanolichens: an evolutionary overview. In: Rain AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Netherlands, pp 31–72

    Google Scholar 

  • Rikkinen J, Poinar GO (2002) Fossilised Anzia (Lecanorales, lichen-forming Ascomycota) from European Tertiary amber. Mycol Res 106:984–990

    Google Scholar 

  • Rivas Plata E, Lumbsch HT (2011) Parallel evolution and phenotypic disparity in lichenized fungi: a case study in the lichen-forming fungal family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Mol Phylogenet Evol 61:45–63

    PubMed  Google Scholar 

  • Rivas Plata E, Lücking R, Lumbsch HT (2012) A new classification for the family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Fungal Divers 52:107–121

    Google Scholar 

  • Roux C, Bellemère A, Boissière JC, Esnault J, Janex-Favre MC, Letrouit MA, Wagner J (1986) Les bases de la systématique moderne des lichens. Bull Soc Bot France, Actual Bot 133:7–40

    Google Scholar 

  • Rosentreter R (1993) Vagrant lichens in North America. Bryologist 96:333–338

    Google Scholar 

  • Santesson R (1952) Foliicolous lichens. I: A revision of the taxonomy of the obligately foliicolous, lichenized fungi. Symb Bot Upsal 12:1–590

    Google Scholar 

  • Scheidegger C (1985) Systematische Studien zur Krustenflechte Anzina carneonivea (Trapeliaceae, Lecanorales). Nova Hedwigia 41:191–218

    Google Scholar 

  • Schmitt I, Lumbsch HT (2004) Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. Mol Phylogenet Evol 33:43–55

    CAS  PubMed  Google Scholar 

  • Schmitt I, Messuti MI, Feige GB, Lumbsch HT (2001) Molecular data support rejection of the generic concept in the Coccotremataceae (Ascomycota). Lichenologist 33:315–321

    Google Scholar 

  • Schmitt I, Lumbsch HT, Sochting U (2003) Phylogeny of the lichen genus Placopsis and its allies based on Bayesian analyses of nuclear and mitochondrial sequences. Mycologia 95:827–835

    CAS  PubMed  Google Scholar 

  • Schmitt I, Mueller G, Lumbsch HT (2005) Ascoma morphology is homoplaseous and phylogenetically misleading in some pyrenocarpous lichens. Mycologia 97:362–374

    CAS  PubMed  Google Scholar 

  • Schmitt I, Yamamoto Y, Lumbsch HT (2006) Phylogeny of Pertusariales (Ascomycotina): resurrection of Ochrolechiaceae and new circumscription of Megasporaceae. J Hattori Bot Lab 100:753–764

    Google Scholar 

  • Schmitt I, del Prado R, Grube M, Lumbsch HT (2009) Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Mol Phylogenet Evol 52:34–44

    CAS  PubMed  Google Scholar 

  • Schmitt I, Frankhauser JD, Sweeney K, Spribille T, Kalb K, Lumbsch HT (2010) Gyalectoid Pertusaria species form a sister-clade to Coccotrema (Ostropomycetidae, Ascomycota) and comprise the new lichen genus Gyalectaria. Mycology 1:75–83

    CAS  Google Scholar 

  • Schmitt I, Otte J, Parnmen S, Sadowska-Des AD, Lücking R, Lumbsch HT (2012) A new circumscription of the genus Varicellaria (Pertusariales, Ascomycota). MycoKeys 4:23–26

    Google Scholar 

  • Schmull M, Miadlikowska J, Pelzer M, Stocker-Wörgötter E, Hofstetter V, Fraker E, Hodkinson BP, Reeb V, Kukwa M, Lumbsch HT, Kauff F, Lutzoni F (2011) Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia 103:983–1003

    PubMed  Google Scholar 

  • Schoch C, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny B, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, De Hoog GS, Crous PW, Hewitt D, Pfister D, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman A, Lumbsch HT, Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O'Donnell K, Sipman H, Rogers JD, Shoemaker R, Sugiyama J, Summerbell RC, Untereiner WA, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    CAS  PubMed  Google Scholar 

  • Sherwood MA (1977a) The ostropalean fungi. Mycotaxon 5:1–277

    Google Scholar 

  • Sherwood MA (1977b) The ostropalean fungi. II: Schizoxylon, with notes on Stictis, Acarosporina, Coccopeziza, and Carestiella. Mycotaxon 6:215–260

    Google Scholar 

  • Sherwood-Pike MA (1987) The ostropalean fungi. III: The Odontotremataceae. Mycotaxon 28:137–177

    Google Scholar 

  • Sipman HJM, Aptroot A (2001) Where are the missing lichens? Mycol Res 105:1433–1439

    Google Scholar 

  • Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (2009) The lichens of Great Britain and Ireland. British Lichen Society, The Natural History Museum, London

    Google Scholar 

  • Smith RM, Thompson K, Warren PH, Gaston KJ (2010) Urban domestic gardens (XIII): composition of the bryophyte and lichen floras, and determinants of species richness. Biol Conserv 143:873–882

    Google Scholar 

  • Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100

    CAS  Google Scholar 

  • Spatafora J, Sung GH, Johnson D, Hesse C, O'Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028

    CAS  PubMed  Google Scholar 

  • Spribille T, Muggia L (2013) Expanded taxon sampling disentangles evolutionary relationships and reveals a new family in Peltigerales (Lecanoromycetidae, Ascomycota). Fungal Divers 58:171–184

    Google Scholar 

  • Staiger B, Kalb K (1995) Haematomma-studien. I. Die Flechtengattung Haematomma, vol 59, Bibliotheca Lichenologica. J. Cramer, Berlin, Stuttgart, pp 1–198

    Google Scholar 

  • Staiger B, Kalb K (1999) Acanthothecis and other graphidioid lichens with warty periphysoids or paraphysis-tips. Mycotaxon 73:69–134

    Google Scholar 

  • Staiger B, Kalb K, Grube M (2006) Phylogeny and phenotypic variation in the lichen family Graphidaceae (Ostropomycetidae, Ascomycota). Mycol Res 110:765–772

    CAS  PubMed  Google Scholar 

  • Steiner J (1901) Über die Function und den systematischen Wert der Pycnoconidien der Flechten. In: Festschrift zur Feier des zweihunderjährigen Bestandes des K.K. Staatsgymnasiums im VIII. Bezirke Wiens, 1901. Kainz & Liebhart, Wien, pp 119–154

    Google Scholar 

  • Stenroos SK, DePriest PT (1998) SSU rDNA phylogeny of cladoniiform lichens. Am J Bot 85:1548–1559

    CAS  PubMed  Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia 98:838–849

    PubMed  Google Scholar 

  • Taylor JW, Berbee ML (2010) Dating the molecular clock in fungi—how close are we? Fungal Biol Rev 24:1–16

    Google Scholar 

  • Tehler A (1982) The species pair concept in lichenology. Taxon 31:708–717

    Google Scholar 

  • Tehler A (1996) Systematics, phylogeny and classification. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, UK, pp 217–239

    Google Scholar 

  • Tehler A, Källersjö M (2001) Parmeliopsis ambigua and P. hyperopta (Parmeliaceae): species or chemotypes? Lichenologist 33:403–408

    Google Scholar 

  • Thell A, Stenroos S, Feuerer T, Kärnefelt I, Myllys L, Hyvönen J (2002) Phylogeny of cetrarioid lichens (Parmeliaceae) inferred from ITS and b-tubulin sequences, morphology, anatomy and secondary chemistry. Myc Prog 1:335–354

    Google Scholar 

  • Thüs H, Schultz M (2009) Fungi, part 1: Lichens. In: Büdel B, Gärtner G, Krienitz L, Preisig HR, Schagerl M (eds) Freshwater flora of Central Europe. Spektrum Akademischer Verlag, Heidelberg, Germany

    Google Scholar 

  • Tibell L (1984) A reappraisal of the taxonomy of Caliciales. In: Hertel H, Oberwinkler F (eds) Beitrage zur Lichenologie. Festschrift J. Poelt, vol 79, Beiheft zur Nova Hedwigia. J. Cramer, Vaduz, pp 597–713

    Google Scholar 

  • Tibell L (1996) Caliciales. In: Flora Neotropica, vol 69. New York Botanical Garden, Bronx, NY

    Google Scholar 

  • Timdal E (1987) Problems of generic delimitation among squamiform members of the Lecideaceae. In: Peveling E (ed) Progress and problems in lichenology in the eighties, vol 25, Bibliotheca Lichenologica. J. Cramer, Berlin, Stuttgart, pp 243–247

    Google Scholar 

  • Timdal E (1992) A monograph of the genus Toninia (Lecideaceae, Ascomycetes). Opera Bot 110:1–137

    Google Scholar 

  • Tschermak-Woess E (1953) Über wenig bekannte und neue Flechtengonidien III. Die Entwicklungsgeschichte von Leptosira thrombii nov. spec., der Gonidie von Thrombium epigaeum. Österr Bot Z 100:203–216

    Google Scholar 

  • Tschermak-Woess E (1984) Über die weite Verbreitung lichenisierter Sippen von Dictyochloropsis und die systematische Stellung von Myrmecia reticulata (Chlorophyta). Plant Syst Evol 147:299–322

    Google Scholar 

  • Tschermak-Woess E (1985) Elliptochloris bilobata kein ganz seltner Phycobiont. Herzogia 7:105–116

    Google Scholar 

  • Tschermak-Woess E (1988a) The algal partner. In: Galun M (ed) CRC handbook of lichenology, vol I. CRC Press, Boca Raton, FL, pp 39–92

    Google Scholar 

  • Tschermak-Woess E (1988b) New and known taxa of Chlorella (Chlorophyceae): occurrence as lichen phycobionts and observations on living dictyosomes. Plant Syst Evol 159:123–139

    Google Scholar 

  • Tschermak-Woess E, Poelt J (1976) Vezdaea, a peculiar lichen genus, and its phycobiont. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 89–105

    Google Scholar 

  • Vainio EA (1890) Étude sur la classification naturelle et la morphologie des lichens du Brésil. Acta Societatis Pro Fauna et Flora Fennica, vol 7. Héritiers J. Simelius, Helsingfors

    Google Scholar 

  • Velmala S, Myllys L, Halonen P, Goward T, Ahti T (2009) Molecular data show that Bryoria fremontii and B. tortuosa (Parmeliaceae) are conspecific. Lichenologist 41:231–242

    Google Scholar 

  • Vězda A, James PW (1973) Sarrameana paradoxa A. Vězda et P. James gen. nov et sp. nova, eine bemerkenswerte Flechte aus Neu-Kaledonien. Preslia 45:305–310

    Google Scholar 

  • Vězda A, Kantvilas G (1988) Sarrameana tasmanica, a new Tasmanian lichen. Lichenologist 20:179–182

    Google Scholar 

  • Vobis G (1977) Studies on the germination of lichen conidia. Lichenologist 9:131–136

    Google Scholar 

  • Vobis G (1980) Bau und Entwicklung der Flechten-Pycnidien und ihrer Conidien, vol 14, Bibliotheca Lichenologica. J. Cramer, Vaduz

    Google Scholar 

  • Wedin M, Tibell L (1997) Phylogeny and evolution of Caliciaceae, Mycocaliciaceae, and Sphinctrinaceae (Ascomycota), with notes on the evolution of the prototunicate ascus. Can J Bot 75:1236–1242

    Google Scholar 

  • Wedin M, Wiklund E (2004) The phylogenetic relationships of Lecanorales suborder Peltigerineae revisited. Symb Bot Upsal 34:469–475

    Google Scholar 

  • Wedin M, Döring H, Mattsson JE (1999) A multi-gene study of the phylogenetic relationships of the Parmeliaceae. Mycol Res 103:1185–1192

    CAS  Google Scholar 

  • Wedin M, Döring H, Nordin A, Tibell L (2000a) Small subunit rDNA phylogeny shows the lichen families Caliciaceae and Physciaceae (Lecanorales, Ascomycotina) to form a monophyletic group. Can J Bot 78:246–254

    CAS  Google Scholar 

  • Wedin M, Döring H, Ekman S (2000b) Molecular phylogeny of the lichen families Cladoniaceae, Sphaerophoraceae, and Stereocaulaceae (Lecanorales, Ascomycotina). Lichenologist 32:171–187

    Google Scholar 

  • Wedin M, Doring H, Gilenstam G (2004) Saprotrophy and lichenization as options for the same fungalspecies on different substrata: environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol 164:459–465

    Google Scholar 

  • Wedin M, Wiklund E, Crewe A, Döring H, Ekman S, Nyberg Å, Schmitt I, Lumbsch HT (2005) Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Myc Res 109:159–172

    CAS  Google Scholar 

  • Wedin M, Jørgensen PM, Wiklund E (2007) Massalongiaceae fam. nov., an overlooked monophyletic group among the cyanobacterial lichens (Peltigerales, Lecanoromycetes, Ascomycota). Lichenologist 39:61–67

    Google Scholar 

  • Wedin M, Wiklund E, Jørgensen PM, Ekman S (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Mol Phylogenet Evol 53:862–871

    PubMed  Google Scholar 

  • Wedin M, Jørgensen PM, Ekman S (2011) Vahliellaceae, a new family of cyanobacterial lichens (Peltigerales, Ascomycetes). Lichenologist 43:67–72

    Google Scholar 

  • Westberg M, Arup U, Kärnefelt I (2007) Phylogenetic studies in the Candelariaceae (lichenized Ascomycota) based on nuclear ITS DNA sequence data. Myc Res 111:1277–1284

    CAS  Google Scholar 

  • Westberg M, Frödén P, Wedin M (2009) A monograph of the genus Placomaronea (Ascomycota, Candelariales). Lichenologist 41:513–527

    Google Scholar 

  • Widhelm T, Lumbsch HT (2011) The phylogenetic placement of Miltideaceae inferred from ribosomal DNA sequence data. In: Bates ST, Bungartz F, Lücking R, Herrera-Campos MA, Zambrano A (eds) Biomonitoring, ecology, and systematics of lichens. Festschrift Thomas H. Nash III, vol 106, Bibliotheca Lichenologica. J. Cramer, Berlin, Stuttgart, pp 365–373

    Google Scholar 

  • Winka K, Ahlberg C, Eriksson OE (1998) Are there lichenized Ostropales? Lichenologist 30:455–462

    Google Scholar 

  • Wooolfit M, Bromham L (2003) Inceased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population size. Mol Biol Evol 20:1545–1555

    Google Scholar 

  • Zahlbruckner A (1903–1907) Lichenes. B. Spezieller Teil. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, vol I(1). Engelmann, Leipzig, pp 49–249

    Google Scholar 

  • Zahlbruckner A (1926) Lichenes. B. Specieller Teil. In: Engler A (ed) Die Natürlichen Pflanzenfamilien, 8, 2nd edn. Engelmann, Leipzig, pp 61–270

    Google Scholar 

  • Zhou QM, Wei JC (2006) A new genus and species Rhizoplacopsis weichingii in a new family Rhizoplacopsidaceae (Ascomycota). Mycosystema 25:376–385

    CAS  Google Scholar 

  • Zhou QM, Wei JC (2007) A new order Umbilicariales J.C. Wei & Q.M. Zhou (Ascomycota). Mycosystema 26:40–45

    Google Scholar 

  • Zoller S, Lutzoni F (2003) Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Mol Phylogenet Evol 29:629–640

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Armando Mendez and Andrea Hart (Botany Library, Natural History Museum) for their help in locating and providing the required literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Gueidan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gueidan, C., Hill, D.J., Miadlikowska, J., Lutzoni, F. (2015). 4 Pezizomycotina: Lecanoromycetes. In: McLaughlin, D., Spatafora, J. (eds) Systematics and Evolution. The Mycota, vol 7B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46011-5_4

Download citation

Publish with us

Policies and ethics