A Method for Defining Human-Machine Micro-task Workflows for Gathering Legal Information

  • Nuno Luz
  • Nuno Silva
  • Paulo Novais
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8929)

Abstract

With the growing popularity of micro-task crowdsourcing platforms, new workflow-based micro-task crowdsourcing approaches are starting to emerge. Such workflows occur in legal, political and conflict resolution domains as well, presenting new challenges, namely in micro-task specification and human-machine interaction, which result mostly from the flow of unstructured data. Domain ontologies provide the structure and semantics required to describe the data flowing throughout the workflow in a way understandable to both humans and machines. This paper presents a method for the construction of micro-task workflows from legal domain ontologies. The method is currently being employed in the context of the UMCourt project in order to formulate information retrieval and conflict resolution workflows.

Keywords

Legal Crowdsourcing Micro-Tasks Workflows Relational Law 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von Ahn, L.: Human Computation. In: 46th ACM IEEE Design Automation Conference, pp. 418–419 (2009)Google Scholar
  2. 2.
    Chklovski, T.: Learner: A System for Acquiring Commonsense Knowledge by Analogy. In: Proceedings of the 2nd ACM International Conference on Knowledge Capture, Sanibel Island, FL, USA, pp. 4–12 (2003)Google Scholar
  3. 3.
    Singh, P., Lin, T., Mueller, E.T., Lim, G., Perkins, T., Zhu, W.L.: Open Mind Common Sense: Knowledge Acquisition from the General Public. In: Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE 2002. LNCS, vol. 2519, pp. 1223–1237. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The Jabberwocky Programming Environment for Structured Social Computing. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, pp. 53–64 (2011)Google Scholar
  5. 5.
    Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: Crowdforge: Crowdsourcing Complex Work. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, pp. 43–52 (2011)Google Scholar
  6. 6.
    Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: Automatic Recursive Task and Workflow Design for Mechanical Turk. In: CHI 2011 Extended Abstracts on Human Factors in Computing Systems, Vancouver, BC, Canada, pp. 2053–2058 (2011)Google Scholar
  7. 7.
    Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Turkit: Human Computation Algorithms on Mechanical Turk. In: Proceedings of the 23rd Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, pp. 57–66 (2010)Google Scholar
  8. 8.
    Luz, N., Silva, N., Maio, P., Novais, P.: Ontology Alignment through Argumentation. In: 2012 AAAI Spring Symposium: Wisdom of the Crowd (2012)Google Scholar
  9. 9.
    Sarasua, C., Simperl, E., Noy, N.F.: CrowdMap: Crowdsourcing Ontology Alignment with Microtasks. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 525–541. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Casanovas, P.: The Future of Law: Relational Justice, Web Services and Second-generation Semantic Web. Legal Information and Communication Tech 7, 137–156 (2009)Google Scholar
  11. 11.
    Quinn, A.J., Bederson, B.B.: Human Computation: A Survey and Taxonomy of a Growing Field. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1403–1412. ACM, New York (2011)Google Scholar
  12. 12.
    Obrst, L., Liu, H., Wray, R.: Ontologies for Corporate Web Applications. AI Magazine 24, 49 (2003)Google Scholar
  13. 13.
    Carneiro, D., Novais, P., Andrade, F., Zeleznikow, J., Neves, J.: Using Case-Based Reasoning and Principled Negotiation to provide decision support for dispute resolution. Knowledge and Information Systems 36, 789–826 (2013)CrossRefGoogle Scholar
  14. 14.
    Novais, P., Carneiro, D., Gomes, M., Neves, J.: The relationship between stress and conflict handling style in an ODR environment. In: Motomura, Y., Butler, A., Bekki, D. (eds.) JSAI-isAI 2012. LNCS, vol. 7856, pp. 125–140. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Casanovas, P.: Legal crowdsourcing and relational law: What the semantic web can do for legal education. Journal of the Australasian Law Teachers Association 5, 159–176 (2012)Google Scholar
  16. 16.
    Poblet, M., Casanovas, P., Cobo, J.M.L., Casellas, N.: ODR, Ontologies, and Web 2.0. 0. Journal of Universal Computer Science 17, 618–634 (2011)Google Scholar
  17. 17.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
  18. 18.
    Gangemi, A., Presutti, V., Blomqvist, E.: The Computational Ontology Perspective: Design Patterns for Web Ontologies. In: Approaches to Legal Ontologies, pp. 201–217. Springer (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nuno Luz
    • 1
  • Nuno Silva
    • 1
  • Paulo Novais
    • 2
  1. 1.GECAD (Knowledge Engineering and Decision Support Group)Polytechnic of PortoPortoPortugal
  2. 2.CCTC (Computer Science and Technology Center)University of Minho BragaPortugal

Personalised recommendations