Skip to main content

Dynamic Analysis of a Pavement Structure Under a Vehicle’s Moving Load

  • Chapter
  • First Online:
  • 2065 Accesses

Abstract

This chapter establishes the models of a finite and infinite beam on a nonlinear foundation with viscous damping. Based on the Galerkin method and the integral transform method, the numerical and analytical solutions are derived for the dynamic response of the pavement structure subjected to a moving load. Moreover, the vibration characteristics of the pavement structure under a moving load are discussed through some examples. Furthermore, the coupled nonlinear vibration of the vehicle–pavement system is studied based on a finite Timoshenko beam on the foundation subjected to a spring–mass–damper oscillator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li SH, Yang SP, Xu BQ, Xing HJ. Chaos of a beam on a nonlinear elastic foundation under moving loads. 2007 International Symposium on Nonlinear Dynamics. J Phys Conf Ser. 2008;96(1):012116.

    Google Scholar 

  2. Sheng DF, Zhang Y, Cheng CJ. Dynamic behavior of nonlinear viscoelastic Timoshenko beams with damage on a viscoelastic foundation. J Shanghai Univ (English Edition). 2004;8(3):245–51.

    Article  MATH  Google Scholar 

  3. Pellicano F, Mastroddi F. Nonlinear dynamics of a beam on an elastic foundation. Nonlinear Dyn. 1997;14(4):335–55.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ansari M, Esmailzadeh E, Younesian D. Internal-external resonance of beams on a non-linear viscoelastic foundation traversed by a moving load. Nonlinear Dyn. 2010;61(1–2):163–82.

    Article  MATH  Google Scholar 

  5. Ansari M, Esmailzadeh E, Younesian D. Frequency analysis of finite beams on a nonlinear Kelvin–Voight foundation under moving loads. J Sound Vib. 2011;330(7):1455–71.

    Article  Google Scholar 

  6. Yan T, Kitipornchai S, Yang J. Dynamic behavior of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Compos Struct. 2011;93(11):2992–3001.

    Article  Google Scholar 

  7. Coskun I. Non-linear vibrations of a beam on a tensionless Winkler foundation. J Sound Vib. 2000;236(3):401–11.

    Article  Google Scholar 

  8. Celep Z, Güler K, Demir F. Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load. Struct Eng Mech. 2011;37(1):61–77.

    Article  Google Scholar 

  9. Vassilev VM, Djondjorov PA. Dynamic stability of viscoelastic pipes on elastic foundations of variable modulus. J Sound Vib. 2006;297(1–2):414–9.

    Article  Google Scholar 

  10. Yang SP, Li SH, Lu YJ. Investigation on dynamic interaction between a heavy vehicle and road pavement. Veh Syst Dyn. 2010;48(8):923–44.

    Article  Google Scholar 

  11. Chen JS, Chen YK. Steady state and stability of a beam on a damped tensionless foundation under a moving load. Int J Non-Linear Mech. 2011;46(1):180–5.

    Article  Google Scholar 

  12. Senalp AD, Arikoglu A, Ozkol I. Dynamic response of a finite length Euler–Bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force. J Mech Sci Technol. 2010;24(10):1957–61.

    Article  Google Scholar 

  13. Thambiratnam D, Zhuge Y. Dynamic analysis of beams on an elastic foundation subjected to moving loads. J Sound Vib. 1996;198(2):149–69.

    Article  MATH  Google Scholar 

  14. Muscolino G, Palmeri A. Response of beams on viscoelastically damped foundation to moving oscillators. Int J Solids Struct. 2007;44(5):1317–36.

    Article  MATH  MathSciNet  Google Scholar 

  15. Arboleda-Monsalve LG, Zapata-Medina DG, Aristizabal-Ochoa JD. Timoshenko beam-column with generalized end conditions on an elastic foundation: dynamic-stiffness matrix and load vector. J Sound Vib. 2008;310(4–5):1057–79.

    Article  Google Scholar 

  16. Ding H, Chen LQ, Yang SP. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. J Sound Vib. 2012;331(10):2426–42.

    Article  Google Scholar 

  17. Contreras JN, Castro-Fresno D, Vega-Zamanillo A. Dynamic modulus of an asphalt mixture by ultrasonic direct test. NDT E Int. 2010;43(7):629–34.

    Article  Google Scholar 

  18. Yang Y, Ding H, Chen LQ. Dynamic response to a moving load of a Timoshenko beam on a nonlinear viscoelastic foundation. Acta Mech Sin. 2013;29(5):718–27.

    Article  MathSciNet  Google Scholar 

  19. Ding H, Shi KL, Chen LQ, Yang SP. Dynamic response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation. Nonlinear Dyn. 2013;73:285–98.

    Article  MATH  MathSciNet  Google Scholar 

  20. Cao CY, Zhong Y. Dynamic response of a beam on a Pasternak foundation under a moving load. J Chongqing Univ. 2008;7:311–6.

    Google Scholar 

  21. Ding H, Yang Y, Chen LQ, Yang SP. Vibration of vehicle–pavement coupled system based on a Timoshenko beam on a nonlinear foundation. J Sound Vib. 2014;333(24):6623–36.

    Article  Google Scholar 

  22. Bhattiprolu U, Bajaj AK, Davies P. An efficient solution methodology to study the response of a beam on a viscoelastic and nonlinear unilateral foundation: static response. Int J Solids Struct. 2013;50:2328–39.

    Article  Google Scholar 

  23. Palmeri A, Cicirello A. Physically-based Dirac’s delta functions in the static analysis of multi-cracked Euler–Bernoulli and Timoshenko beams. Int J Solids Struct. 2011;48:2184–95.

    Article  Google Scholar 

  24. Thambiratnam D, Zhuge Y. Dynamic analysis of beams on an elastic foundation subjected to moving loads. J Sound Vib. 1996;198:149–69.

    Article  MATH  Google Scholar 

  25. Ding H, Shi KL, Chen LQ, Yang SP. Adomian polynomials for nonlinear response of supported Timoshenko beams subjected to a moving harmonic load. Acta Mech Solida Sin. 2014;27(4):383–93.

    Article  Google Scholar 

  26. Kargarnovin MH, Younesian D, Thompson DJ. Response of beams on nonlinear viscoelastic foundations to harmonic moving loads. Comput Struct. 2005;83(23–24):1865–77.

    Article  Google Scholar 

  27. Hryniewicz Z. Dynamics of a Rayleigh beam on a nonlinear foundation due to a moving load using Adomian decomposition and coiflet expansion. Soil Dyn Earthq Eng. 2011;31(8):1123–31.

    Article  Google Scholar 

  28. Adomian G. A new approach to nonlinear partial differential equations. J Math Anal Appl. 1984;102(2):420–34.

    Article  MATH  MathSciNet  Google Scholar 

  29. Vahidi AR, Jalalvand B. Improving the accuracy of the Adomian decomposition method for solving nonlinear equations. Appl Math Sci. 2012;6(10):487–97.

    MATH  MathSciNet  Google Scholar 

  30. Wazwaz AM. A reliable modification of the Adomian decomposition method. Appl Math Comput. 1999;102(1):77–86.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaopu Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, S., Chen, L., Li, S. (2015). Dynamic Analysis of a Pavement Structure Under a Vehicle’s Moving Load. In: Dynamics of Vehicle-Road Coupled System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45957-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45957-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45956-0

  • Online ISBN: 978-3-662-45957-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics