Skip to main content

Other Types of Smart Wormlike Micelles

  • Chapter
  • First Online:
Smart Wormlike Micelles

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 1081 Accesses

Abstract

In comparison with the widely reported triggers described in previous chapters—namely temperature, pH, and light—this chapter discusses triggers which have been far less documented: redox potential and hydrocarbons and their use to control the assembly and properties of wormlike micelles. In addition, recent reports of multiple stimuli-responsive wormlike micelles are also described, as well as smart reverse wormlike micelles, to complete this collection of “unconventional” smart wormlike micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saji T, Hoshino K, Aoyagui S (1985) Reversible formation and disruption of micelles by control of the redox state of the head group. J Am Chem Soc 107:6865–6868

    Article  CAS  Google Scholar 

  2. Saji T, Hoshino K, Aoyagui S (1985) Reversible formation and disruption of micelles by control of the redox state of the surfactant tail group. J Chem Soc Chem Commun 13:865–866

    Article  Google Scholar 

  3. Liu X, Abbott NL (2009) Spatial and temporal control of surfactant systems. J Colloid Interface Sci 339:1–18

    Article  CAS  Google Scholar 

  4. Brown P, Butts CP, Eastoe J (2013) Stimuli-responsive surfactants. Soft Matter 9:2365–2374

    Article  CAS  Google Scholar 

  5. Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M (2004) Control of viscoelasticity using redox reaction. J Am Chem Soc 126:12282–12283

    Article  CAS  Google Scholar 

  6. Aydogan N, Gallardo BS, Abbott NL (1999) A molecular-thermodynamic model for Gibbs monolayers formed from redox-active surfactants at the surfaces of aqueous solutions: redox-induced changes in surface tension. Langmuir 15:722–730

    Article  CAS  Google Scholar 

  7. Aydogan N, Abbott NL (2001) Comparison of the surface activity and bulk aggregation of ferrocenyl surfactants with cationic and anionic headgroups. Langmuir 17:5703–5706

    Article  CAS  Google Scholar 

  8. Sakai H, Imamura H, Kondo Y, Yoshino N, Abe M (2004) Reversible control of vesicle formation using electrochemical reaction. Colloid Surf A Physicochem Eng Asp 232:221–228

    Article  CAS  Google Scholar 

  9. Tsuchiya K, Sakai H, Saji T, Abe M (2003) Electrochemical reaction in an aqueous solution of a ferrocene-modified cationic surfactant mixed with an anionic surfactant. Langmuir 19:9343–9350

    Article  CAS  Google Scholar 

  10. Hoffmann H, Ebert G (1988) Surfactants, micelles and fascinating phenomena. Angew Chem Int Ed Engl 27:902–912

    Article  Google Scholar 

  11. Hoffmann H, Ulbricht W (1987) The rheological behavior of different viscoelastic surfactant solutions. Tenside, Surfactants, Deterg 24:23–31

    CAS  Google Scholar 

  12. Molchanov VS, Philippova OE, Khokhlov AR, Kovalev YA, Kuklin AI (2007) Self-assembled networks highly responsive to hydrocarbons. Langmuir 23:105–111

    Article  CAS  Google Scholar 

  13. Philippova OE, Khokhlov AR (2010) Smart polymers for oil production. Petro Chem 50:266–270

    Article  Google Scholar 

  14. Maitland GC (2000) Oil and gas production. Curr Opin Colloid Interface Sci 5:301–311

    Article  CAS  Google Scholar 

  15. Chase B, Chmilowski W, Marcinew R, Mitchell C, Dang Y, Krauss D, Nelson E, Lantz T, Parham C, Plummer J (1997) Clear fracturing fluids for increased well productivity. Oilfield Rev 9:20–33

    CAS  Google Scholar 

  16. Shibaev AV, Tamm MV, Molchanov VS, Rogachev AV, Kuklin AI, Dormidontova EE, Philippova OE (2014) How a viscoelastic solution of wormlike micelles transforms into a microemulsion upon absorption of hydrocarbon: new insight. Langmuir 30:3705–3714

    Article  CAS  Google Scholar 

  17. Cohen Stuart MA, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  CAS  Google Scholar 

  18. Schattling P, Jochum FD, Theato P (2014) Multi-stimuli responsive polymers—the all-in-one talents. Polym Chem 5:25–36

    Article  CAS  Google Scholar 

  19. Li RR, Feng FL, Wang YS, Yang XY, Yang XL, Yang VC (2014) Folic acid-conjugated pH/temperature/redox multi-stimuli responsive polymer microspheres for delivery of anti-cancer drug. J Colloid Interface Sci 429:34–44

    Article  CAS  Google Scholar 

  20. Zhuang JM, Gordon MR, Ventura J, Li LY, Thayumanavan S (2013) Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev 42:7421–7435

    Article  CAS  Google Scholar 

  21. Wang F, Klaikherd A, Thayumanavan S (2011) Temperature sensitivity trends and multi-stimuli sensitive behavior in amphiphilic oligomers. J Am Chem Soc 133:13496–13503

    Article  CAS  Google Scholar 

  22. Klaikherd A, Nagamani C, Thayumanavan S (2009) Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 131:4830–4838

    Article  CAS  Google Scholar 

  23. Fameau A-L, Lam S, Velev OD (2013) Multi-stimuli responsive foams combining particles and self-assembling fatty acids. Chem Sci 4:3874–3881

    Google Scholar 

  24. Yao RC, Qian JS, Li HZ, Yasin A, Xie YJ, Yang HY (2014) Synthesis and high-performance of a new sarcosinate anionic surfactant with a long unsaturated tail. RSC Adv 4:2865–2872

    Google Scholar 

  25. Graf G, Drescher S, Meister A, Dobner B, Blume A (2011) Self-assembled bolaamphiphile fibers have intermediate properties between crystalline nanofibers and wormlike micelles: formation of viscoelastic hydrogels switchable by changes in pH and salinity. J Phys Chem B 115:10478–10487

    Article  CAS  Google Scholar 

  26. Tung S-H, Huang Y-E, Raghavan SR (2007) Contrasting effects of temperature on the rheology of normal and reverse wormlike micelles. Langmuir 23:372–376

    Article  CAS  Google Scholar 

  27. Jiang LX, Wang K, Ke FY, Liang DH, Huang JB (2009) Endowing catanionic surfactant vesicles with dual responsive abilities via a noncovalent strategy: introduction of a responser, sodium cholate. Soft Matter 5:599–606

    Article  CAS  Google Scholar 

  28. Ketner AM, Kumar R, Davies TS, Elder PW, Raghavan SR (2007) A simple class of photorheological fluids: surfactant solutions with viscosity tunable by light. J Am Chem Soc 129:1553–1559

    Article  CAS  Google Scholar 

  29. Davies TS, Ketner AM, Raghavan SR (2006) Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J Am Chem Soc 128:6669–6675

    Article  CAS  Google Scholar 

  30. Buwalda RT, Stuart MCA, Engberts JBFN (2000) Wormlike micellar and vesicular phases in aqueous solutions of single-tailed surfactants with aromatic counterions. Langmuir 16:6780–6786

    Article  CAS  Google Scholar 

  31. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204

    Article  CAS  Google Scholar 

  32. Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mat 10:515–527

    Article  CAS  Google Scholar 

  33. Zhang Y, Han Y, Chu Z, He S, Zhang J, Feng Y (2013) Thermally-induced structural transitions from fluids to hydrogels with pH-switchable anionic wormlike micelles. J Colloid Interface Sci 394:319–328

    Article  CAS  Google Scholar 

  34. Yang Y, Dong J, Li X (2012) Micelle to vesicle transitions of N-dodecyl-1,ω-diaminoalkanes: effects of pH, temperature and salt. J Colloid Interface Sci 380:83–89

    Article  CAS  Google Scholar 

  35. Palazzo G (2013) Wormlike reverse micelles. Soft Matter 9:10668–10677

    Article  CAS  Google Scholar 

  36. Hashizaki K, Taguchi H, Saito Y (2009) A novel reverse worm-like micelle from a lecithin/sucrose fatty acid ester/oil system. Colloid Polym Sci 287:1099–1105

    Article  CAS  Google Scholar 

  37. Kumar R, Ketner AM, Raghavan SR (2010) Nonaqueous photorheological fluids based on light-responsive reverse wormlike micelles. Langmuir 26:5405–5411

    Article  CAS  Google Scholar 

  38. Lee HY, Diehn KK, Sun KS, Chen TH, Raghavan SR (2011) Reversible photorheological fluids based on spiropyran-doped reverse micelles. J Am Chem Soc 133:8461–8463

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Feng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Feng, Y., Chu, Z., Dreiss, C.A. (2015). Other Types of Smart Wormlike Micelles. In: Smart Wormlike Micelles. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45950-8_6

Download citation

Publish with us

Policies and ethics