Skip to main content

The State of the Art of SPH Modelling for Flow-slide Propagation

  • Chapter
  • First Online:
Modern Technologies for Landslide Monitoring and Prediction

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

  • 2106 Accesses

Abstract

Flow-slide disaster is a continuing problem along hillsides in mountainous areas, which always results in numerous casualties and catastrophic destruction of buildings and regional landscapes. Predicting of the propagation stage is of great importance for the disaster mitigation. The smoothed particle hydrodynamics (SPH) method, a mesh-free particle technique, has been widely applied for modelling of flow-slide evolution with some success. The main goal of this chapter was to provide a general view of SPH applications for the analysis of flow-slide disasters including flow-like landslides, landslide-generated waves, and debris flows. The leading features of the proposed SPH models are detailed and the achievements are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie, S., Morichon, D., Grilli, S., & Glockner, S. (2010). Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model. Coastal Engineering, 57, 779–794.

    Article  Google Scholar 

  • Ataie-Ashtiani, B., & Mansour-Rezaei, S. (2009). Modification of weakly compressible smoothed particle hydrodynamics for preservation of angular momentum in simulation of impulsive wave problems. Coastal Engineering Journal, 51(4), 363–386.

    Article  Google Scholar 

  • Ataie-Ashtiani, B., & Shobeyri, G. (2008). Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. International Journal for Numerical Method, 56, 209–232.

    Article  Google Scholar 

  • Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37, 229–256.

    Article  Google Scholar 

  • Bui, H. H., Fukagawa, R., Sako, K., & Ohno, S. (2008a). Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. International Journal for Numerical and Analytical Methods in Geomechanics, 32, 1537–1570.

    Article  Google Scholar 

  • Bui, H. H., Sako, K., Fukagawa, R., & Wells, J. C. (2008b). SPH-based numerical simulations for large deformation of geomaterial considering soil-structure interaction. In Proceedings 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (pp. 1–6), Goa, India, October 1–6, 2008.

    Google Scholar 

  • Capone, T., Panizzo, A., & Monaghan, J. J. (2010). SPH modeling of water waves generated by submarine landslides. Journal of Hydraulic Research, 48, 80–84.

    Article  Google Scholar 

  • Cascini, L., Cuomo, S., Pastor, M., Sorbino, G., & Piciullo, L. (2014). SPH run-out modelling of channelised landslides of the flow type. Geomorphology, 214, 502–513.

    Article  Google Scholar 

  • Crosta, G. B., Imposimato, S., & Roddeman, D. G. (2003). Numerical modelling of large landslides stability and runout. Natural Hazards and Earth System Sciences, 3, 523–538.

    Article  Google Scholar 

  • Crosta, G. B., Imposimato, S., Roddeman, D. G., Chiesa, S., & Moia, F. (2004). Small fast moving flow-like landslides in volcanic deposits: The 2001 Las Colinas Landslide (El Salvador). Engineering Geology, 79, 185–214.

    Article  Google Scholar 

  • Crosta, G. B., Imposimato, S., & Roddeman, D. G. (2006). Continuum numerical modelling of flow-like landslides. Landslides from Massive Rock Slope Failure, 49, 211–232.

    Article  Google Scholar 

  • Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29, 47–65.

    Article  Google Scholar 

  • Dai, Z. L., & Huang, Y. (2014). 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Engineering Geology. doi:10.1016/j.enggeo.2014.03.018.

    Google Scholar 

  • Das, K., Janetzke, R., Basu, D., Green, S., & Stamatakos, J. (2009). Numerical simulations of tsunami wave generation by submarine and aerial landslides using RANS and SPH models. In Proceedings 28th International Conference onOcean, Offshore and Arctic Engineering’ (Vol. 5, pp. 581–594), Honolulu, HI, USA.

    Google Scholar 

  • Fang, H., Sun, S., Wang, X., & Chen, D. (2013). A simulation animation method of debris flow based on improved SPH and fixed-point rotation. International Journal of Digital Content Technology and its Applications, 7(2), 721–730.

    Article  Google Scholar 

  • Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particles hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181, 375–389.

    Article  Google Scholar 

  • Haddad, B., Pastor, M., Palacios, D., & Munoz-Salinas, E. (2010). A SPH depth integrated model for Popocatepetl 2001 lahar (Mexico): Sensitivity analysis and runout simulation. Engineering Geology, 114(3–4), 312–329.

    Article  Google Scholar 

  • Huang, Y., Dai, Z. L., Zhang, W. J., & Chen, Z. Y. (2011). Visual simulation of landslide fluidized movement based on smoothed particle hydrodynamics. Natural Hazards, 59(3), 1225–1238.

    Article  Google Scholar 

  • Huang, Y., Zhang, W. J., Xu, Q., Xie, P., & Hao, L. (2012). Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides, 9(2), 275–283.

    Article  Google Scholar 

  • Hungr, O., Evans, S. G., Bovis, M. J., & Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3), 221–238.

    Article  Google Scholar 

  • Koshizuka, S., & Oka, Y. (1996). Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering, 123(3), 421–434.

    Google Scholar 

  • Laigle, D., Lachamp, P., & Naaim, M. (2007). SPH-based numerical investigation of mudflow and other complex fluid flow interactions with structures. Computational Geosciences, 11(4), 297–306.

    Article  Google Scholar 

  • Lee, E. S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., & Stansby, P. (2008). Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. Journal of Computational Physics, 227, 8417–8436.

    Article  Google Scholar 

  • Liu, W. K., Jun, S., & Zhang, Y. F. (1995). Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20(8–9), 1081–1106.

    Article  Google Scholar 

  • Liu, M. B., & Liu, G. R. (2010). Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering, 17(1), 25–76.

    Article  Google Scholar 

  • Lucy, L. B. (1977). A numerical approach to the testing of fusion process. Astronomical Journal, 82, 1013–1024.

    Article  Google Scholar 

  • Marrone, S., Colagrossi, A., Le Touze, D., & Graziani, G. (2010). Fast free-surface detection and level-set function definition in SPH solvers. Journal of Computational Physics, 229(10), 3652–3663.

    Article  Google Scholar 

  • McDougall, S., & Hungr, O. (2004). A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal, 41(6), 1084–1097.

    Article  Google Scholar 

  • McDougall, S., & Hungr, O. (2005). Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal, 42(5), 1437–1448.

    Article  Google Scholar 

  • Minatti, L., & Pasculli, A. (2011). SPH numerical approach in modelling 2D muddy debris flow. In Proceedings of 5th International Conference onDebris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment (5th DFHM)’ (pp. 467–475), Padua, Italy, June 14–17, 2011.

    Google Scholar 

  • Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual Reviews of Astronomy and Astrophysics, 30, 543–574.

    Google Scholar 

  • Monaghan, J. J. (1994). Simulating free-surface flows with SPH. Journal of Computational, 110(2), 399–406.

    Google Scholar 

  • Monaghan, J. J. (2000). SPH without a tensile instability. Journal of Computational Physics, 159(2), 290–311.

    Article  Google Scholar 

  • Nayroles, B., Touzot, G., & Villon, P. (1992). Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, 10, 307–318.

    Article  Google Scholar 

  • Pasculli, A., Minatti, L., Sciarra, N., & Paris, E. (2013). SPH modeling of fast muddy debris flow: Numerical and experimental comparison of certain commonly utilized approaches. Italian Journal of Geosciences, 132(3), 350–365.

    Article  Google Scholar 

  • Pastor, M., Blanc, T., Haddad, B., Petrone, S., Sanchez Morles, M., Drempetic, V., et al. (2014). Application of a SPH depth-integrated model to landslide run-out analysis. Landslides. doi:10.1007/s10346-014-0484-y.

  • Pastor, M., Haddad, B., Sorbino, G., & Drempetic, V. (2009). A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. International Journal for Numerical and Analytical Methods in Geomechanics, 33, 143–172.

    Article  Google Scholar 

  • Qiu, L. C. (2008). Two-dimensional SPH simulations of landslide-generated water waves. Journal of Hydraulic Engineering, 134(5), 668–671.

    Article  Google Scholar 

  • Rodriguez-Paz, M. X., & Bonet, J. (2004). A corrected smooth particle hydrodynamics method for the simulation of debris flows. Numerical Methods for Partial Differential Equations, 20(1), 140–163.

    Article  Google Scholar 

  • Schwaiger, H.F., & Higman, B. (2007). Lagrangian hydrocode simulations of the 1958 Lituya Bay tsunamigenic rockslide. Geochemistry Geophysics Geosystems, 8(7), paper no. Q07006.

    Google Scholar 

  • Shao, S. D., & Lo, E. Y. M. (2003). Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 26(7), 787–800.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Basic Research Program of China (973 Program) through Grant No. 2012CB719803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dai, Z., Huang, Y. (2015). The State of the Art of SPH Modelling for Flow-slide Propagation. In: Scaioni, M. (eds) Modern Technologies for Landslide Monitoring and Prediction. Springer Natural Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45931-7_8

Download citation

Publish with us

Policies and ethics