Advertisement

A New Approach Based on Terrestrial Remote-sensing Techniques for Rock Fall Hazard Assessment

  • Paolo MazzantiEmail author
  • Alessandro Brunetti
  • Alberto Bretschneider
Chapter
Part of the Springer Natural Hazards book series (SPRINGERNAT)

Abstract

Remote-sensing techniques are changing the way of investigating the Earth and its surface processing. Among these, rock fall from vertical cliffs are very frequent and difficult to be investigated because they frequently occur from inaccessible places. At this regard, terrestrial remote-sensing techniques represent a great opportunity for investigating inaccessible cliffs from a remote position. In this paper, a new approach for the investigation of rock cliff and the prioritization of rock fall hazard based on data collected by remote-sensing techniques has been developed and applied to a real coastal cliff located in the southern part of Italy. By the herein presented approach, data derived from a survey performed by the combination of terrestrial laser scanner, ground-based SAR interferometry and infrared thermography are used in order to identify both predisposing factors (mapping of discontinuities) and state of activity indicators of rock instabilities. Hence, a prioritizations map of the cliff in terms of stability interventions is achieved that can be easily used by local authorities in charge of land management.

Keywords

Ground-based SAR interferometry Terrestrial laser scanning Infrared thermography Priority maps State of activity 

References

  1. Abellán, A., Calvet, J., Vilaplana, J. M., & Blanchard, J. (2010). Detection and spatial prediction of rock falls by means of terrestrial laser scanner monitoring. Geomorphology, 119, 162–171.CrossRefGoogle Scholar
  2. Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., & Lato, M. J. (2014). Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39(1), 80–97.CrossRefGoogle Scholar
  3. Arosio, D., Longoni, L., Papini, M., Scaioni, M., Zanzi, L., & Alba, M. I. (2009). Towards rockfall forecasting through observing deformations and listening to microseismic emissions. Natural Hazards and Earth System Science, 9(4), 1119–1131.CrossRefGoogle Scholar
  4. Baroň, I., Bečkovský, D., & Míča, L. (2012). Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides, 11, 15–27.Google Scholar
  5. Bertotti, G., Casolari, E., & Ricotti, V. (1999). The Gargano Promontory: A neogene contractional belt within the Adriatic plate. Terra Nova, 11, 168–173.CrossRefGoogle Scholar
  6. Bosellini, A., Neri, C., & Lucani, V. (1993). Platform margin collapses and sequence stratigraphic organization of carbonate slopes: Cretaceous-Eocene, Gargano Promontory. Terra Nova, 5, 282–297.CrossRefGoogle Scholar
  7. Bosellini, A., Morsilli, M., & Neri, C. (1999). Long-term event stratigraphy of the Apulia Platform margin: Upper Jurassic to Eocene, Gargano, Southern Italy. Journal of Sedimentary Research, 69, 1241–1252.CrossRefGoogle Scholar
  8. Bozzano, F., Mazzanti, P., Prestininzi, A., & Scarascia Mugnozza, G. (2010). Research and development of advanced technologies for landslide hazard analysis in Italy. Landslides, 7(3), 381–385. doi: 10.1007/s10346-010-0208-x.CrossRefGoogle Scholar
  9. Buckley, S. J., Howell, J. A., Enge, H. D., & Kurz, T. H. (2008). Terrestrial laser scanning in geology: Data acquisition, processing and accuracy considerations. Journal of the Geological Society London, 165, 625–638.CrossRefGoogle Scholar
  10. Budzier, H., & Garlach, G. (2011). Thermal infrared sensors, Theory, Optimization and Practice (p. 302). Chichester, UK: Wiley.CrossRefGoogle Scholar
  11. Chilovi, C., De Feyter, A. J., & Pompucci, A. (2000). Wrench zone reactivation in the Adriatic Block: The example of the Mattinata fault system (SE Italy). Bollettino della Società Geologica Italiana, 119, 3–8.Google Scholar
  12. Fell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31, 261–272.CrossRefGoogle Scholar
  13. Ferretti, A., Monti Guarnieri, A., Prati, C., Rocca, F., & Massonet, D. (2007). InSAR principles: Guideline for SAR interferometry processing and interpretation (Vol. TM-19). Noordwijk, The Netherlands: ESA Publication.Google Scholar
  14. Fröhlich, C., & Mettenleiter, M. (2004). Terrestrial laser scanning—New perspectives in 3D surveying. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 26(8), W2.Google Scholar
  15. Gambini, R., & Tozzi, M. (1996). Tertiary geodynamic evolution of the Southern Adria microplate. Terra Nova, 8, 593–602.CrossRefGoogle Scholar
  16. Gaussorgues, G. (1994). Infrared thermography. Microwave technology (Vol. 5). London: Chapman & Hall.CrossRefGoogle Scholar
  17. Hatheway, H. W. (2009). The complete ISRM suggested methods for rock characterization, testing and monitoring. 1974–2006. Environmental and Engineering Geoscience, 15(1), 47–48. doi: 10.2113/gseegeosci.15.1.47.CrossRefGoogle Scholar
  18. Heritage, G. L., & Large, A. R. G. (2009). Laser scanning for the environmental sciences (p. 302). Chichester, UK: Wiley.CrossRefGoogle Scholar
  19. Hungr, O., & Evans, S. G. (1989). Engineering aspects of rockfall hazard in Canada. Geological Survey of Canada, Open File, 2061, 102.Google Scholar
  20. Kemeny, J., Turner, K., & Norton, B. (2006). LIDAR for rock mass characterization: Hardware, software, accuracy and best-practices. In F. Tonon & J. Kottenstette (Eds.), Laser and photogrammetric methods for rock face characterization (pp. 49–62). Alexandria, Egypt: ARMA.Google Scholar
  21. Longoni, L., Arosio, D., Scaioni, M., Papini, M., Zanzi, L., Roncella, R., & Brambilla, D. (2012). Surface and subsurface non-invasive investigations to improve the characterization of a fractured rock mass. Journal of Geophysics and Engineering, 9, 461–472.CrossRefGoogle Scholar
  22. Martino, S., & Mazzanti, P. (2014). Integrating geomechanical surveys and remote sensing for sea cliff slope stability analysis: The Mt. Pucci case study (Italy). Natural Hazards Earth System Science, 14, 831–848. doi: 10.5194/nhess-14-831-2014.CrossRefGoogle Scholar
  23. Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36, 441–500.CrossRefGoogle Scholar
  24. Mazzanti, P. (2011). Displacement monitoring by terrestrial SAR interferometry for geotechnical purposes. Geotechnical instrumentation news, 29(2), 25–28.Google Scholar
  25. Mazzanti, P. & Brunetti, A. (2010). Assessing rock fall susceptibility by terrestrial SAR interferometry. In Proceedings of the ‘Mountain Risks International Conference’ (pp. 109–114), Firenze, Italy, November 24–26, 2010.Google Scholar
  26. Monserrat, O., Crosetto, M., & Luzi, G. (2014). A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 40–48.CrossRefGoogle Scholar
  27. Morsilli, M. (1998). Stratigrafia e sedimentologia del margine della Piattaforma Apula nel Gargano (Giurassico superiore-Cretaceo inferiore) (p. 203). PhD dissertation. Italy: Università di Bologna (in Italian).Google Scholar
  28. Oppikofer, T., Jaboyedoff, M., & Keusen, H. R. (2008). Collapse at the eastern Eiger flank in the Swiss Alps. Nature Geoscience, 1(8), 531–535.CrossRefGoogle Scholar
  29. Palmstrom, A. (1982). The volumetric joint count—A useful and simple measure of the degree of jointing. In Proceedings of the 4th International Congress IAEG, New Delhi, India (pp. 221–228).Google Scholar
  30. Palmstrom, A. (1985). Application of the volumetric joint count as a measure of rock mass jointing. In Proceedings of the International Symposium on ‘Fundamentals of Rock Joints’, Bjorkliden, Sweden (pp. 103–110).Google Scholar
  31. Palmstrom, A. (1986). A general practical method for identification of rock masses to be applied in evaluation of rock mass stability conditions and TBM boring progress. In Proceedings of the Conference on ‘Fjellsprengingsteknikk, Bergmekanikk, Geoteknikk’, Oslo, Norway, paper No. 31 (pp. 1–31).Google Scholar
  32. Palmstrom, A. (1996). RMi—A system for characterizing rock mass strength for use in rock engineering. Journal of Rock Mechanics and Tunneling Technology, 1(2), 69–108.Google Scholar
  33. Riquelme, A., Abellán, A., Tomás, R., & Jaboyedoff, M. (2014). A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers & Geosciences, 68, 38–52.CrossRefGoogle Scholar
  34. Scaioni, M., Roncella, R., & Alba, M. I. (2013). Change detection and deformation analysis in point clouds: Application to rock face monitoring. Photogrammetric Engineering & Remote Sensing, 79(5), 441–456.CrossRefGoogle Scholar
  35. Sen, Z., & Eissa, E. A. (1992). Rock quality charts for long—Normally distributed block size. International Journal of Rock Mechanics, Mining Sciences and Geomechanics, 29(1), 1–12.CrossRefGoogle Scholar
  36. Shan, J., & Toth, C. K. (2009). Topographic laser scanning and ranging. Principles and processing. Boca Raton, FL, USA: Taylor & Francis Group.Google Scholar
  37. Speranza, F., & Kissel, C. (1993). First paleomagnetism of Eocene rocks from Gargano: Widespread overprint or non rotation? Geophysical Research Letters, 20, 2627–2630.CrossRefGoogle Scholar
  38. Squarzoni, C., Calgaro, A., Teza, G., Acosta, C. A. T., Pernito, M. A. & Bucceri, N. (2008). Terrestrial laser scanning and infrared thermography in rock fall prone slope analysis. Geophysical Research Abstracts 2008, Vol. 10, abstract No. EGU2008-A-09254.Google Scholar
  39. Sturzenegger, M., & Stead, D. (2009). Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Natural Hazards Earth System Science, 9, 267–287.CrossRefGoogle Scholar
  40. Vollmer, M., & Müllmann, K. P. (2010). Infrared thermal imaging. Fundamental research and applications (p. 593). Weinheim, Germany: Wiley-VCH Verlag.CrossRefGoogle Scholar
  41. Vosselman, G., & Maas, H. G. (2010). Airborne and terrestrial laser scanning. Boca Raton, FL, USA: Taylor & Francis Group.Google Scholar
  42. Wehr, A., & Lohr, U. (1999). Airborne laser scanning—An introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 68–82.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Paolo Mazzanti
    • 2
    • 3
    • 1
    Email author
  • Alessandro Brunetti
    • 2
  • Alberto Bretschneider
    • 4
  1. 1.Department of Earth Sciences‘Sapienza’ University of RomeRomeItaly
  2. 2.NHAZCA S.r.l., spin-off ‘La Sapienza’ University of RomeRomeItaly
  3. 3.CERI, Research Centre for the Prevention, Prediction and Control of Geological Risks‘LA Sapienza’ University of RomeRomeItaly
  4. 4.Department of Geotechnics, Environment, Natural Hazards and Earth SciencesIFSTTARNantesFrance

Personalised recommendations