Skip to main content

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter presents a cyber-physical approach to design of HVDC control system architectures and evolving HVDC grid operation and control modes. In addition, the chapter describes the communication system architectures needed for centralized and distributed operation and control of HVDC grids. Modeling and analysis methods suitable to analyze such systems using graph theoretic concepts, and also the design of distributed control systems utilizing a Multi-Agent approach and its dependence on the information graph theory. The chapter is concluded with a description of an application for distributed control of DC grids utilizing the concepts introduced. The application is presented both with regards to comparison with other design choices and analysis of performance and robustness of the algorithm versus communication metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. European Commission, The 2020 climate and energy package, ec.europa.eu, http://ec.europa.eu/clima/policies/package/indexen.htm (accessed: May 22, 2014)

  2. Van Hertem, D., Ghandhari, M., Delimar, M.: Technical limitations towards a SuperGrid — A European prospective. In: 2010 IEEE International Energy Conference and Exhibition (EnergyCon), December 18-22, pp. 302–309 (2010)

    Google Scholar 

  3. Erdle, S.: The DESERTEC Initiative; Powering the development perspectives of southern Mediterranean countries. Discussion Paper, German Development Institute (2010)

    Google Scholar 

  4. North-east agra - a 800 kv transmission superhighway multiterminal system with 8,000 mw converter capacity, nea800 brochure (March 2011), http://search.abb.com/library/Download.aspx?DocumentID=POW0071&LanguageCode=en&DocumentPartId=&Action=Launch (accessed: April 22, 2014)

  5. Tamiru Woldeyesus Shire; VSC-HVDC based Network Reinforcement. Master thesis, Delf University of Technology, Netherlands (2009)

    Google Scholar 

  6. Agelidis, V.G., et al.: Recent Advances in High-Voltage Direct-Current Power Transmission Systems. In: IEEE International Conference on Industrial Technology, ICIT 2006, pp. 206–213 (2006)

    Google Scholar 

  7. Haileselassie, T.M., Uhlen, K.: Impact of DC Line Voltage Drops on Power Flow of MTDC Using Droop Control. IEEE Trans. Power Syst. 27(3), 1441–1449 (2012)

    Article  Google Scholar 

  8. Beerten, J., Cole, S., Belmans, R.: Generalized Steady-state VSC MTDC Model for Sequential AC/DC Power Flow Algorithms. IEEE Transactions on Power Systems 27(2), 821–829 (2012)

    Article  Google Scholar 

  9. Jun, L., et al.: Operation and Control of Multiterminal HVDC Transmission for Offshore Wind Farms. IEEE Transactions on Power Delivery 26(4) (2011)

    Google Scholar 

  10. Mehdipour Pirbazari, A.: Ancillary services: definitions, markets and practices in the world. In: IEEE PES Transmission and Distribution Conference and Exposition (2010)

    Google Scholar 

  11. Phulpin, Y., Ernst, D.: Ancillary services and operation of multi-terminal HVDC grids. In: Proc. of International Workshop on Transmission Networks for Offshore Wind Power Plants, Aarhus, Denmark, pp. 1–6 (October 2011)

    Google Scholar 

  12. Gomis-Bellmunt, O., Liang, J., Ekanayake, J., King, R., Jenkins, N.: Topologies of multi-terminal HVDC-VSC transmission for large offshore wind farms. Electric Power Systems Research 81(2), 271–281 (2011)

    Article  Google Scholar 

  13. Tang, L., Ooi, B.: Locating and isolating dc faults in multi-terminal dc systems. IEEE Transactions on Power Delivery 22(3), 1877–1884 (2007)

    Article  Google Scholar 

  14. Yang, J., et al.: Multi-terminal DC Wind Farm Collection Grid Internal Fault Analysis and Protection Design. IEEE Transactions on Power Delivery 25(4), 2308–2318 (2010)

    Article  Google Scholar 

  15. Bell, K., et al.: Economic and technical criteria for designing future off-shore HVDC grids. In: IEEE Innovative Smart Grid Technologies Conference Europe (2010)

    Google Scholar 

  16. Nazari, M., Ghandhari, M.: Application of Multi-Agent Control to Multi-Terminal HVDC Systems. In: EPEC, Canada (2013)

    Google Scholar 

  17. Babazadeh, D., Chenine, M., Nordstrom, L.: Survey on the Factors Required in Design of Communication Architecture for Future DC Grids. In: IFAC (May 2013)

    Google Scholar 

  18. Quaglia, D.: Cyber-Physical Systems: Modeling, Simulation, Design and Validation. In: Mediterranean Conference on Embedded Computing, MECO (2013)

    Google Scholar 

  19. Susuki, Y., et al.: A Hybrid System Approach to the Analysis and Design of Power Grid Dynamic Performance. Proceedings of IEEE (2012)

    Google Scholar 

  20. Khaitan, S., McCalley, J.: Design Techniques and Applications of Cyber Physical Systems: A Survey. To appear in IEEE Systems Journal (2014)

    Google Scholar 

  21. Khaitan, S., McCalley, J.: Cyber Physical System Approach for Design of Power Grids: A Survey. In: IEEE PES GM 2013, Vancouver, BC, July 21-25, pp. 1–5 (2013)

    Google Scholar 

  22. Cheng, S.-T., Chang, T.-Y.: Cyber Physical System Model Using Genetic Algorithm for Actuators Control. In: CECNet (2012)

    Google Scholar 

  23. Stefanov, A., Liu, C.-C.: ICT Modeling for Integrated Simulation of Cyber-Physical Power Systems. In: IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin (2012)

    Google Scholar 

  24. Bottura, R., Babazadeh, D., Zhu, K., Borghetti, A., Nordström, L., Nucci, C.: SITL and HLA Co-simulation Platforms: Tools for Analysis of the Integrated ICT and Electric Power System. In: IEEE Eurocon 2013 (2013)

    Google Scholar 

  25. Babazadeh, D., Chenine, M., Kun, Z., Al-Hammouri, A., Nordström, L.: A Platform for Wide Area Monitoring and Control System ICT Analysis and Development. In: IEEE Grenoble PowerTech 2013 (2013)

    Google Scholar 

  26. Seyboth, G.S., Dimarogonas, D.V., Johansson, K.H.: Event-based broadcasting for multi-agent average consensus. Automatica 49(1), 245–252 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Contr. 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  28. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  29. Veilleux, É., Ooi, B.-T.: Multi-Terminal HVDC Grid with Power Flow Controllability. In: Cigre 2012 (2012)

    Google Scholar 

  30. OPNET System-In-The-Loop (SITL) Module, http://www.opnet.com/solutions/network_rd/system_in_the_loop.html

  31. Gonzalez, R., Karlsson, A.: Impact of Communication Network Quality on Control and Operation of Multiterminal HVDC Systems. Bachelor Thesis, KTH, Royal Institute of Technology (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Nordström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nordström, L., Babazadeh, D. (2015). Cyber Physical Approach to HVDC Grid Control. In: Khaitan, S., McCalley, J., Liu, C. (eds) Cyber Physical Systems Approach to Smart Electric Power Grid. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45928-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45928-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45927-0

  • Online ISBN: 978-3-662-45928-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics