Skip to main content

The Continuous Hedging Argument

  • Chapter
Derivative Security Pricing

Abstract

This chapter develops a continuous hedging argument for derivative security pricing. Following fairly closely the original Black and Scholes (1973) article, we make use of Ito’s lemma to derive the expression for the option value and exploit the idea of creating a hedged position by going long in one security, say the stock, and short in the other security, the option. Alternative hedging portfolios based on Merton’s approach and self financing strategy approach are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nor is the strategy required to generate some cash outflow, say in the form of dividends.

  2. 2.

    In (7.36) we set τ → T, 0 → t, Q 1 → Q S , Q 2 → Q B , μ 1 → μ S, μ 2 → rB, σ 1 → σ S, σ 2 → 0.

  3. 3.

    Which here becomes \(V (u) = Q_{S}(u)S(u) + Q_{B}(u)B(u)\).

References

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.

    Article  Google Scholar 

  • Hull, J. (2000). Options, futures and other derivatives (4th ed.). Boston: Prentice-Hall.

    Google Scholar 

  • Samuelson, P. A. (1973). Mathematics of speculative price. SIAM Review, 15(1), 1–42.

    Article  Google Scholar 

  • Thorp, E. O., & Kassouf, S. T. (1967). Beat the market. New York: Random House.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix

Appendix 7.1 Relation Between Stock and Option Betas

Recall the stochastic differential equations for the stock price and the option price which may be written in return form as

$$\displaystyle\begin{array}{rcl} \frac{\mathit{dS}} {S} =\mu \mathit{dt} +\sigma \mathit{dz},& &{}\end{array}$$
(7.45)
$$\displaystyle\begin{array}{rcl} \frac{\mathit{dC}} {C} =\mu _{c}\mathit{dt} +\sigma _{c}\mathit{dz}.& &{}\end{array}$$
(7.46)

We let M denote the value of the market portfolio and assume that it follows the same type of stochastic process as the stock, i.e.

$$\displaystyle{ \frac{\mathit{dM}} {M} =\mu _{m}\mathit{dt} +\sigma _{m}\mathit{dz}. }$$
(7.47)

From portfolio theory the definition of the beta factors is

$$\displaystyle{ \beta = \frac{\mathop{\mathrm{cov}}\nolimits \left (\frac{\mathit{dS}} {S}, \frac{\mathit{dM}} {M} \right )} {\mathop{\mathrm{var}}\nolimits \left (\frac{\mathit{dM}} {M} \right )},\qquad \beta _{c} = \frac{\mathop{\mathrm{cov}}\nolimits \left (\frac{\mathit{dC}} {C}, \frac{\mathit{dM}} {M} \right )} {\mathop{\mathrm{var}}\nolimits \left (\frac{\mathit{dM}} {M} \right )}. }$$
(7.48)

Since

$$\displaystyle{\mathbb{E}\left (\frac{\mathit{dS}} {S} \right ) =\mu \mathit{dt}\;\;\mbox{ and }\;\;\mathbb{E}\left (\frac{\mathit{dM}} {M} \right ) =\mu _{m}\mathit{dt},}$$

it follows that

$$\displaystyle\begin{array}{rcl} \mathop{\mathrm{cov}}\nolimits \left (\frac{\mathit{dS}} {S}, \frac{\mathit{dM}} {M} \right )& =& \mathbb{E}\left [\left (\frac{\mathit{dS}} {S} -\mu \mathit{dt}\right )\left (\frac{\mathit{dM}} {M} -\mu _{m}\;\mathit{dt}\right )\right ] {}\\ & =& \mathbb{E}[(\sigma \mathit{dz})(\sigma _{m}\mathit{dz})] =\sigma \sigma _{m}\mathbb{E}(\mathit{dz}^{2}) =\sigma \sigma _{ m}\;\mathit{dt}. {}\\ \end{array}$$

Also \(\mathop{\mathrm{var}}\nolimits \left (\frac{dM} {M} \right ) =\sigma _{ m}^{2}\mathit{dt}\), hence,

$$\displaystyle{ \beta = \frac{\sigma \sigma _{m}\mathit{dt}} {\sigma _{m}^{2}\mathit{dt}} = \frac{\sigma } {\sigma _{m}}. }$$
(7.49)

Similarly

$$\displaystyle{ \beta _{c} = \frac{\sigma _{c}} {\sigma _{m}}. }$$
(7.50)

Eliminating σ m between (7.49) and (7.50) yields

$$\displaystyle{ \frac{\beta } {\beta _{c}} = \frac{\sigma } {\sigma _{c}}, }$$
(7.51)

which is the result used in the main text.

Problems

Problem 7.1

Rework the hedging argument of Sect. 7.1 but now the hedging portfolio consists of physical positions Q S in the stock, Q C in the option and Q B in risk free bonds. The risk free bond is an instrument whose market value is B and whose return process is given by

$$\displaystyle{\frac{\mathit{dB}} {B} = \mathit{rdt}.}$$

Problem 7.2

  1. (a)

    Rework the continuous hedging argument of Sect. 7.1 but now allow the underlying asset to pay a continuously compounded dividend at the rate q.

    Show that in this case the condition of no-riskless arbitrage (7.14) becomes

    $$\displaystyle{\frac{\mu _{c} - r} {\sigma _{c}} = \frac{\mu -(r - q)} {\sigma }.}$$

    Thus show that Eq. (7.16) becomes

    $$\displaystyle{\frac{\partial C} {\partial t} + (r - q)S\frac{\partial C} {\partial S} + \frac{1} {2}\sigma ^{2}S^{2}\frac{\partial ^{2}C} {\partial S^{2}} = \mathit{rC}.}$$
  2. (b)

    Adjust the self financing strategy argument of Sect. 7.4 in the case that the underlying asset pays a continuously compounded dividend at the rate q.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiarella, C., He, XZ., Nikitopoulos, C.S. (2015). The Continuous Hedging Argument. In: Derivative Security Pricing. Dynamic Modeling and Econometrics in Economics and Finance, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45906-5_7

Download citation

Publish with us

Policies and ethics