Skip to main content

Neighborhood Contingency Logic

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8923)

Abstract

A formula is contingent, if it is possibly true and possibly false; a formula is non-contingent, if it is not contingent, i.e., if it is necessarily true or necessarily false. In this paper, we propose a neighborhood semantics for contingency logic, in which the interpretation of the non-contingency operator is consistent with its philosophical intuition. Based on this semantics, we compare the relative expressivity of contingency logic and modal logic on various classes of neighborhood models, and investigate the frame definability of contingency logic. We present a decidable axiomatization for classical contingency logic (the obvious counterpart of classical modal logic), and demonstrate that for contingency logic, neighborhood semantics can be seen as an extension of Kripke semantics.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-45824-2_6
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-45824-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Areces, C., Figueira, D.: Which semantics for neighbourhood semantics? In: IJCAI, pp. 671–676 (2009)

    Google Scholar 

  2. Brogan, A.: Aristotle’s logic of statements about contingency. Mind 76(301), 49–61 (1967)

    CrossRef  Google Scholar 

  3. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press (1980)

    Google Scholar 

  4. Cresswell, M.: Necessity and contingency. Studia Logica 47, 145–149 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Fan, J., Wang, Y., van Ditmarsch, H.: Almost necessary. Advances in Modal Logic 10, 178–196 (2014)

    Google Scholar 

  6. Fan, J., Wang, Y., van Ditmarsch, H.: Contingency and knowing whether (to appear, 2014)

    Google Scholar 

  7. Hansen, H.H., Kupke, C., Pacuit, E.: Neighbourhood structures: Bisimilarity and basic model theory. Logical Methods in Computer Science 5(2), 1–38 (2009)

    CrossRef  MathSciNet  Google Scholar 

  8. van der Hoek, W., Lomuscio, A.: A logic for ignorance. Electronic Notes in Theoretical Computer Science 85(2), 117–133 (2004)

    CrossRef  Google Scholar 

  9. Ma, M., Sano, K.: How to update neighborhood models. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI. LNCS, vol. 8196, pp. 204–217. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  10. Montague, R.: Universal grammar. Theoria 36, 373–398 (1970)

    CrossRef  MathSciNet  Google Scholar 

  11. Montgomery, H., Routley, R.: Contingency and non-contingency bases for normal modal logics. Logique et Analyse 9, 318–328 (1966)

    MATH  MathSciNet  Google Scholar 

  12. Pacuit, E.: Neighborhood semantics for modal logic: An introduction. ESSLLI Lecture (2007), http://web.pacuit.org/papers/nbhdesslli.pdf

  13. Scott, D.: Advice on modal logic. In: Philosophical Problems in Logic: Some Recent Developments, pp. 143–173 (1970)

    Google Scholar 

  14. Steinsvold, C.: A note on logics of ignorance and borders. Notre Dame Journal of Formal Logic 49(4), 385–392 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Wheeler, G.: AGM belief revision in monotone modal logics. In: Proc. of LPAR 2010 (2010)

    Google Scholar 

  16. Zolin, E.: Completeness and definability in the logic of noncontingency. Notre Dame Journal of Formal Logic 40(4), 533–547 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, J., van Ditmarsch, H. (2015). Neighborhood Contingency Logic. In: Banerjee, M., Krishna, S.N. (eds) Logic and Its Applications. ICLA 2015. Lecture Notes in Computer Science, vol 8923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45824-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45824-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45823-5

  • Online ISBN: 978-3-662-45824-2

  • eBook Packages: Computer ScienceComputer Science (R0)