Planar and Quasi Planar Simultaneous Geometric Embedding

  • Emilio Di Giacomo
  • Walter Didimo
  • Giuseppe Liotta
  • Henk Meijer
  • Stephen Wismath
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)


A simultaneous geometric embedding (SGE) of two planar graphs G 1 and G 2 with the same vertex set is a pair of straight-line planar drawings Γ1 of G 1 and Γ2 of G 2 such that each vertex is drawn at the same point in Γ1 and Γ2. Many papers have been devoted to the study of which pairs of graphs admit a SGE, and both positive and negative results have been proved. We extend the study of SGE, by introducing and characterizing a new class of planar graphs that makes it possible to immediately extend several positive results that rely on the property of strictly monotone paths. Moreover, we introduce a relaxation of the SGE setting where Γ1 and Γ2 are required to be quasi planar (i.e., they can have crossings provided that there are no three mutually crossing edges). This relaxation allows for the simultaneous embedding of pairs of planar graphs that are not simultaneously embeddable in the classical SGE setting and opens up to several new interesting research questions.


Planar Graph Edge Incident Collinear Point Outerplanar Graph Planar Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. of Combinatorial Theory, Series A 114(3), 563–571 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with no geometric simultaneous embedding. J. of Graph Algorithms and Applications 16(1), 37–83 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press (2014)Google Scholar
  5. 5.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 243–255. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cabello, S., van Kreveld, M.J., Liotta, G., Meijer, H., Speckmann, B., Verbeek, K.: Geometric simultaneous embeddings of a graph and a matching. J. Graph Algorithms and Applications 15(1), 79–96 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Didimo, W., Kaufmann, M., Liotta, G., Okamoto, Y., Spillner, A.: Vertex angle and crossing angle resolution of leveled tree drawings. Inform. Process. Lett. 112(16), 630–635 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. Computational Geometry 42(6-7), 704–721 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Evans, W., Kusters, V., Saumell, M., Speckmann, B.: Column planarity and partial simultaneous geometric embedding. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 259–271. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 37–49. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J. on Discrete Mathematics 27(1), 550–561 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Valtr, P.: On geometric graphs with no k pairwise parallel edges. Discrete & Computational Geometry 19(3), 461–469 (1998)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Henk Meijer
    • 2
  • Stephen Wismath
    • 3
  1. 1.Dipartimento di IngegneriaUniversità degli Studi di PerugiaItaly
  2. 2.University College RooseveltThe Netherlands
  3. 3.Department of Mathematics and Computer ScienceUniversity of LethbridgeCanada

Personalised recommendations