Advertisement

Drawing Simultaneously Embedded Graphs with Few Bends

  • Luca Grilli
  • Seok-Hee Hong
  • Jan Kratochvíl
  • Ignaz Rutter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

We study the problem of drawing simultaneously embedded graphs with few bends. We show that for any simultaneous embedding with fixed edges (Sefe) of two graphs, there exists a corresponding drawing realizing this embedding such that common edges are drawn as straight-line segments and each exclusive edge has a constant number of bends. If the common graph is biconnected and induced, a straight-line drawing exists. This yields the first efficient testing algorithm for simultaneous geometric embedding (Sge) for a non-trivial class of graphs.

Keywords

Planar Graph Input Graph Outer Face Internal Edge Embed Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: Discrete Algorithms (SODA 2010), pp. 202–221. SIAM (2010)Google Scholar
  2. 2.
    Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph. J. Discrete Alg. 14, 150–172 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with no geometric simultaneous embedding. J. Graph Algorithms Appl. 16(1), 37–83 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bläsius, T., Karrer, A., Rutter, I.: Simultaneous embedding: Edge orderings, relative positions, cutvertices. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 220–231. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press (2013)Google Scholar
  6. 6.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. In: Discrete Algorithms (SODA 2013), pp. 1030–1043. SIAM (2013)Google Scholar
  7. 7.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. Graph Algorithms Appl. 9(3), 347–364 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embeddings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the common graph is 2-connected. J. Graph Algorithms Appl. 17(3), 147–171 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hong, S.H., Nagamochi, H.: Convex drawings of graphs with non-convex boundary constraints. Discrete Appl. Math. 156(12), 2368–2380 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Jelínek, V., Kratochvíl, J., Rutter, I.: A kuratowski-type theorem for planarity of partially embedded graphs. Computational Geometry Theory & Applications 46(4), 466–492 (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. J. Graph Algorithms Appl. 13(2), 205–218 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representations. J. Comb. Theory, Ser. B 53(1), 1–4 (1991)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mchedlidze, T., Nöllenburg, M., Rutter, I.: Drawing planar graphs with a prescribed inner face. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 316–327. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combinatorics 17, 717–728 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Patrignani, M.: On extending a partial straight-line drawing. International Journal of Foundations of Computer Science 17(5), 1061–1069 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Schaefer, M.: Toward a theory of planarity: Hanani-tutte and planarity variants. J. Graph Algorithms Appl. 17(4), 367–440 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Tutte, W.T.: How to draw a graph. London Math. Soc. s3-13(1), 743–767 (1963)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luca Grilli
    • 1
  • Seok-Hee Hong
    • 2
  • Jan Kratochvíl
    • 3
  • Ignaz Rutter
    • 3
    • 4
  1. 1.Dipartimento di IngegneriaUniversità degli Studi di PerugiaItaly
  2. 2.School of Information TechnologiesUniversity of SydneyAustralia
  3. 3.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles University in PragueCzech Republic
  4. 4.Institute of Theoretical InformaticsKarlsruhe Institute of TechnologyGermany

Personalised recommendations