Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)


We present a fundamentally different approach to orthogonal layout of data flow diagrams with ports. This is based on extending constrained stress majorization to cater for ports and flow layout. Because we are minimizing stress we are able to better display global structure, as measured by several criteria such as stress, edge-length variance, and aspect ratio. Compared to the layered approach, our layouts tend to exhibit symmetries, and eliminate inter-layer whitespace, making the diagrams more compact.


actor models data flow diagrams orthogonal routing layered layout stress majorization force-directed layout 


  1. 1.
    Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sketch-driven orthogonal graph drawing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 1–11. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Chimani, M., Gutwenger, C., Mutzel, P., Spönemann, M., Wong, H.M.: Crossing minimization and layouts of directed hypergraphs with port constraints. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 141–152. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for separation constraint layout of graphs. IEEE Transactions on Visualization and Computer Graphics 12(5), 821–828 (2006)CrossRefGoogle Scholar
  4. 4.
    Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G., North, C.: A comparison of user-generated and automatic graph layouts. IEEE Transactions on Visualization and Computer Graphics 15(6), 961–968 (2009)CrossRefGoogle Scholar
  5. 5.
    Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: A constraint-based network diagram authoring tool. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 420–431. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph layout. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–241. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the feedback arc set problem. Information Processing Letters 47(6), 319–323 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: Incremental grid-like layout using soft and hard constraints. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 448–459. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Klauske, L.K.: Effizientes Bearbeiten von Simulink Modellen mit Hilfe eines spezifisch angepassten Layoutalgorithmus. Ph.D. thesis, Technische Universität Berlin (2012)Google Scholar
  12. 12.
    Klauske, L.K., Dziobek, C.: Improving modeling usability: Automated layout generation for Simulink. In: Proceedings of the MathWorks Automotive Conference, MAC 2010 (2010)Google Scholar
  13. 13.
    Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded hardware and software systems. Journal of Circuits, Systems, and Computers (JCSC) 12(3), 231–260 (2003)CrossRefGoogle Scholar
  14. 14.
    Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Rüegg, U., Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: Stress-minimizing orthogonal layout of data flow diagrams with ports. Technical report (August 2014),
  16. 16.
    Schulze, C.D., Spönemann, M., von Hanxleden, R.: Drawing layered graphs with port constraints. Journal of Visual Languages and Computing, Special Issue on Diagram Aesthetics and Layout 25(2), 89–106 (2014)CrossRefGoogle Scholar
  17. 17.
    Spönemann, M., Fuhrmann, H., von Hanxleden, R., Mutzel, P.: Port constraints in hierarchical layout of data flow diagrams. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 135–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man and Cybernetics 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Wybrow, M., Marriott, K., Stuckey, P.J.: Orthogonal connector routing. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 219–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceKiel UniversityKielGermany
  2. 2.Faculty of Information TechnologyMonash University, NICTAAustralia

Personalised recommendations