Advertisement

Balanced Circle Packings for Planar Graphs

  • Md. Jawaherul Alam
  • David Eppstein
  • Michael T. Goodrich
  • Stephen G. Kobourov
  • Sergey Pupyrev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

We study balanced circle packings and circle-contact representations for planar graphs, where the ratio of the largest circle’s diameter to the smallest circle’s diameter is polynomial in the number of circles. We provide a number of positive and negative results for the existence of such balanced configurations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Pupyrev, S.: Balanced circle packings for planar graphs. Arxiv report arxiv.org/abs/1408.4902 (2014)Google Scholar
  2. 2.
    Bannister, M.J., Devanny, W.E., Eppstein, D., Goodrich, M.T.: The Galois complexity of graph drawing: Why numerical solutions are ubiquitous for force-directed, spectral, and circle packing drawings. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 149–161. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Bern, M., Eppstein, D.: Optimal Möbius transformations for information visualization and meshing. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 14–25. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. Th. Appl. 9(1-2), 3–24 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Brightwell, G., Scheinerman, E.: Representations of planar graphs. SIAM J. Discrete Math. 6(2), 214–229 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chen, G., Yu, X.: Long cycles in 3-connected graphs. J. Comb. Theory B 86(1), 80–99 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. Th. Appl. 25(3), 233–256 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dolev, D., Leighton, T., Trickey, H.: Planar embedding of planar graphs. Advances in Computing Research 2, 147–161 (1984)Google Scholar
  9. 9.
    Duncan, C.A., Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal polygonal representation of planar graphs. Algorithmica 63(3), 672–691 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Eppstein, D.: Planar Lombardi drawings for subcubic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 126–137. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.: Strict confluent drawing. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 352–363. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combinatorics, Probability & Computing 3(2), 233–246 (1994)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gilbert, E.N., Moore, E.F.: Variable-length binary encodings. Bell System Technical Journal 38(4), 933–967 (1959)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. Discrete Comput. Geom. 48(1), 239–254 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hliněný, P.: Classes and recognition of curve contact graphs. J. Comb. Theory B 74(1), 87–103 (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Koebe, P.: Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88, 141–164 (1936)Google Scholar
  17. 17.
    Luo, F.: Rigidity of polyhedral surfaces, III. Geometry & Topology 15(4), 2299–2319 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discrete Math. 7(2), 172–183 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117(1-3), 257–263 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms. Springer (2012)Google Scholar
  21. 21.
    Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. SIAM J. Comput. 2, 33–43 (1973)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Md. Jawaherul Alam
    • 1
  • David Eppstein
    • 2
  • Michael T. Goodrich
    • 2
  • Stephen G. Kobourov
    • 1
  • Sergey Pupyrev
    • 1
    • 3
  1. 1.Department of Computer ScienceUniversity of ArizonaTucsonUSA
  2. 2.Department of Computer ScienceUniversity of CaliforniaIrvineUSA
  3. 3.Institute of Mathematics and Computer ScienceUral Federal UniversityRussia

Personalised recommendations