Advertisement

Hydrogen Bonding for Molecular, Macromolecular, and Supramolecular Materials

  • Hui Wang
  • Dan-Wei Zhang
  • Zhan-Ting LiEmail author
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 88)

Abstract

This chapter highlights the recent advance in the applications of hydrogen bonding for modulating or improving the conformations, properties, or functions of molecular and supramolecular architectures, including molecular switching systems, self-healing materials, artificial photosynthesis, dye-sensitized solar cells, organic photovoltaics, organic light-emitting diodes, and organic field-effect transistors.

Keywords

Artificial Photosynthesis Hydrogen Bonding Motif Equatorial Conformation Functional Building Block Axial Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dong H, Fu X, Liu J, Wang Z, Hu W (2013) Adv Mater 25:6158Google Scholar
  2. 2.
    Hales JM, Barlow S, Kim H, Mukhopadhyay S, Bredas JL, Perry JW, Marder SR (2014) Chem Mater 26:549Google Scholar
  3. 3.
    Park S, Wang G, Cho B, Kim Y, Song S, Ji Y, Yoon MH, Lee T (2012) Nat Nanotechnol 7:438Google Scholar
  4. 4.
    Yen YS, Chou HH, Chen YC, Hsu CY, Lin JT (2012) J Mater Chem 22:8734Google Scholar
  5. 5.
    Ma Y, Wen Y, Song Y (2011) J Mater Chem 21:3522Google Scholar
  6. 6.
    Stupp SI, Palmer LC (2014) Chem Mater 26:507Google Scholar
  7. 7.
    Liu H, Xu J, Li Y, Li Y (2010) Acc Chem Res 43:1496Google Scholar
  8. 8.
    Grozema FC, Siebbeles LDA (2008) Int Rev Phys Chem 27:87Google Scholar
  9. 9.
    Broer DJ, Bastiaansen CMW, Debije MG, Schenning APHJ (2012) Angew Chem Int Ed 51:7102Google Scholar
  10. 10.
    Soegiarto AC, Yan W, Kent AD, Ward MD (2011) J Mater Chem 21:2204Google Scholar
  11. 11.
    Krische MJ, Lehn JM (2000) Struct Bond 96:3Google Scholar
  12. 12.
    Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071Google Scholar
  13. 13.
    Tournilhac F, Cordier P, Montarnal D, Soulie-Ziakovic C, Leibler L (2010) Macromol Symp 291:84Google Scholar
  14. 14.
    Panman MR, Bakker BH, den Uyl D, Kay ER, Leigh DA, Buma WJ, Brouwer AM, Geenevasen JAJ, Woutersen S (2013) Nat Chem 5:929Google Scholar
  15. 15.
    Li ZT, Zhang KD, Shi ZM, Wang L, Zhou C, Lu BY (2012) Pure Appl Chem 84:965Google Scholar
  16. 16.
    Sauvage JP, Gaspard P (ed) (2011) From non-covalent assemblies to molecular machines. Wiley-VCH, WeinheimGoogle Scholar
  17. 17.
    Kay ER, Leigh DA, Zerbetto F (2007) Angew Chem Int Ed 46:72Google Scholar
  18. 18.
    Takeuchi M, Ikeda M, Sugasaki A, Shinkai S (2001) Acc Chem Res 34:865Google Scholar
  19. 19.
    Leung KCF, Chak CP, Lo CM, Wong WY, Xuan S, Cheng CHK (2009) Chem Asian J 4:364Google Scholar
  20. 20.
    Samoshin AV, Veselov IS, Huynh L, Shestakova AK, Chertkov VA, Grishina GV, Samoshin VV (2011) Tetrahedron Lett 52:5375Google Scholar
  21. 21.
    Samoshin AV, Joo H, Korneichuk AY, Veselov IS, Grishina GV, Samoshin VV (2013) Tetrahedron Lett 54:1020Google Scholar
  22. 22.
    Su X, Aprahamian I (2014) Chem Soc Rev 43:1963Google Scholar
  23. 23.
    Su X, Aprahamian I (2011) Org Lett 13:30Google Scholar
  24. 24.
    Roncucci P, Pirondini L, Paderni G, Massera C, Dalcanale E, Azov VA, Diederich F (2006) Chem Eur J 12:4775Google Scholar
  25. 25.
    Pochorovski I, Ebert MO, Gisselbrecht JP, Boudon C, Schweizer WB, Diederich F (2012) J Am Chem Soc 134:14702Google Scholar
  26. 26.
    Zhang DW, Zhao X, Hou JL, Li ZT (2012) Chem Rev 112:5271Google Scholar
  27. 27.
    Kanamori D, Okamura T, Yamamoto H, Ueyama N (2005) Angew Chem Int Ed 44:969Google Scholar
  28. 28.
    Shi ZM, Huang J, Ma Z, Zhao X, Guan Z, Li ZT (2010) Macromolecules 43:6185Google Scholar
  29. 29.
    Zhang KD, Zhao X, Wang GT, Liu Y, Zhang Y, Lu HJ, Jiang XK, Li ZT (2011) Angew Chem Int Ed 50:9866Google Scholar
  30. 30.
    van Gemert GML, Peeters JW, Söntjens SHM, Janssen HM, Bosman AW (2012) Macromol Chem Phys 213:234Google Scholar
  31. 31.
    Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Nature 451:977Google Scholar
  32. 32.
    Burattini S, Greenland BW, Chappell D, Colquhoun HM, Hayes W (2010) Chem Soc Rev 39:1973Google Scholar
  33. 33.
    Herbst F, Döhler D, Michael P, Binder WH (2013) Macromol Rapid Commun 34:203Google Scholar
  34. 34.
    Chen Y, Kushner AM, Williams GA, Guan Z (2012) Nat Chem 4:467Google Scholar
  35. 35.
    Sijbesma RP, Meijer EW (2003) Quadruple hydrogen bonded systems. Chem Commun 5–16Google Scholar
  36. 36.
    Hentschel J, Kushner AM, Ziller J, Guan Z (2012) Angew Chem Int Ed 51:10561Google Scholar
  37. 37.
    Folmer BJB, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW (2000) Adv Mater 12:874Google Scholar
  38. 38.
    SupraPolix BV. http://www.suprapolix.com/. Accessed Dec 2012
  39. 39.
    Mukhopadhyay P, Fujita N, Takada A, Kishida T, Shirakawa M, Shinkai S (2010) Angew Chem Int Ed 49:6338Google Scholar
  40. 40.
    Xu Z, Peng J, Yan N, Yu H, Zhang S, Liu K, Fang Y (2013) Soft Matter 9:1091Google Scholar
  41. 41.
    Phadke A, Zhang C, Arman B, Hsu CC, Mashelkar RA, Lele AK, Tauber MJ, Arya G, Varghese S (2012) Proc Natl Acad Sci USA 109:4383Google Scholar
  42. 42.
    Meyer TJ (1989) Acc Chem Res 22:163Google Scholar
  43. 43.
    Gust D, Moore TA, Moore AL (2001) Acc Chem Res 34:40Google Scholar
  44. 44.
    Balzani V, Credi A, Venturi M (2008) ChemSusChem 1:26Google Scholar
  45. 45.
    Wasielewski MR (2009) Acc Chem Res 42:1910Google Scholar
  46. 46.
    Witus LS, Francis MB (2011) Acc Chem Res 44:774Google Scholar
  47. 47.
    Rao KV, Datta KKR, Eswaramoorthy M, George SJ (2012) Chem Eur J 18:2184Google Scholar
  48. 48.
    Panda MK, Ladomenou K, Coutsolelos AG (2012) Coord Chem Rev 256:2601Google Scholar
  49. 49.
    Loiseau F, Marzanni G, Quici S, Indelli MT, Campagna S (2003) An artificial antenna complex containing four [Ru(bpy)3]2+-type chromophores as light-harvesting components and a [Ru(bpy)(CN)4]2− subunit as the energy trap. A structural motif which resembles the natural photosynthetic systems. Chem Commun 286–287Google Scholar
  50. 50.
    Sinks LE, Rybtchinski B, Iimura M, Jones BA, Goshe AJ, Zuo X, Tiede DM, Li X, Wasielewski MR (2005) Chem Mater 17:6295Google Scholar
  51. 51.
    Langford SJ, Latter MJ, Woodward CP (2006) Photochem Photobiol 82:1530Google Scholar
  52. 52.
    Osuka A, Shiratori H, Yoneshima R, Okada T, Taniguchi S, Mataga N (1995) Intracomplex electron transfer in a hydrogen-bonded porphyrin–diimide system. Chem Lett 24:913–194Google Scholar
  53. 53.
    Osuka A, Yoneshima R, Shiratori H, Okada T, Taniguchi S, Mataga N (1998) Electron transfer in a hydrogen-bonded assembly consisting of porphyrin–diimide. Chem Commun 1567–1568Google Scholar
  54. 54.
    Sessler JL, Brown CT, O’Connor D, Springs SL, Wang R, Sathiosatham M, Hirose T (1998) J Org Chem 63:7370Google Scholar
  55. 55.
    Gadde S, Islam DMS, Wijesinghe CA, Subbaiyan NK, Zandler ME, Araki Y, Ito O, D’Souza F (2007) J Phys Chem C 111:12500Google Scholar
  56. 56.
    Ley D, Guzman CX, Adolfsson KH, Scott AM, Braunschweig AB (2014) J Am Chem Soc 136:7809Google Scholar
  57. 57.
    Martín N, Sánchez L, Herranz MA, Illescas B, Guldi DM (2007) Acc Chem Res 40:1015Google Scholar
  58. 58.
    Segura M, Sánchez L, de Mendoza J, Martín N, Guldi DM (2003) J Am Chem Soc 125:15093Google Scholar
  59. 59.
    Blondeau P, Segura M, Pérez-Fernández R, de Mendoza J (2007) Chem Soc Rev 36:198Google Scholar
  60. 60.
    Damrauer NH, Hodgkiss JM, Rosenthal J, Nocera DG (2004) J Phys Chem B 108:6315Google Scholar
  61. 61.
    Sánchez L, Sierra M, Martín N, Myles AJ, Dale TJ, Rebek J Jr, Seitz W, Guldi DM (2006) Angew Chem Int Ed 45:4637Google Scholar
  62. 62.
    O’Regan B, Gratzel M (1991) Nature 353:737Google Scholar
  63. 63.
    McConnell RD (2002) Renew Sustain Energy Rev 6:273Google Scholar
  64. 64.
    Durrant JR, Haque SA, Palomares E (2004) Coord Chem Rev 248:1247Google Scholar
  65. 65.
    Luo Y, Li D, Meng Q (2009) Adv Mater 21:4647Google Scholar
  66. 66.
    Gong J, Liang J, Sumathy K (2012) Renew Sustain Energy Rev 16:5848Google Scholar
  67. 67.
    Yao QH, Shan L, Li FY, Yin DD, Huang CH (2003) New J Chem 27:1277Google Scholar
  68. 68.
    Ooyama Y, Sato T, Harima Y, Ohshita J (2014) J Mater Chem A 2:3293Google Scholar
  69. 69.
    Katono M, Bessho T, Meng S, Humphry-Baker R, Rothenberger G, Zakeeruddin SM, Kaxiras E, Grätzel M (2011) Langmuir 27:14248Google Scholar
  70. 70.
    Zhang F, Shi F, Ma W, Gao F, Jiao Y, Li H, Wang J, Shan X, Lu X, Meng S (2013) J Phys Chem C 117:14659Google Scholar
  71. 71.
    Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian T, Yanagida S (2004) Chem Mater 16:1806Google Scholar
  72. 72.
    Privalov T, Boschloo G, Hagfelt A, Svensson PH, Kloo L (2009) J Phys Chem C 113:783Google Scholar
  73. 73.
    Kusama H, Sugihara H, Sayama K (2010) J Phys Chem C 114:11335Google Scholar
  74. 74.
    Wang P, Zakeeruddin SM, Moser JE, Grätzel M (2003) J Phys Chem B 107:13280Google Scholar
  75. 75.
    Mohmeyer N, Kuang D, Wang P, Schmidt HW, Zakeeruddin SM, Grätzel M (2006) J Mater Chem 16:2978Google Scholar
  76. 76.
    Kim JH, Kang MS, Kim YJ, Won J, Park NG, Kang YS (2004) Dyesensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles. Chem Commun 1662–1663Google Scholar
  77. 77.
    Kim YJ, Kim JH, Kang MS, Lee MJ, Won J, Lee JC, Kang YS (2004) Adv Mater 16:1753Google Scholar
  78. 78.
    Kang MS, Kim JH, Won J, Kang YS (2007) J Phys Chem C 111:5222Google Scholar
  79. 79.
    Jeon LS, Kim SY, Kim SJ, Lee YG, Kang MS, Kang YS (2010) J Photochem Photobiol A 212:88Google Scholar
  80. 80.
    El-Zohry AM, Zietz B (2013) J Phys Chem C 117:6544Google Scholar
  81. 81.
    Cai M, Pan X, Liu W, Sheng J, Fang X, Zhang C, Huo Z, Tian H, Xiao S, Dai S (2013) J Mater Chem A 1:4885Google Scholar
  82. 82.
    Abbotto A, Manfredi N (2011) Dalton Trans 40:12421Google Scholar
  83. 83.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789Google Scholar
  84. 84.
    Yu J, Huang J, Zang Y (2013) Mater Sci Res J 7:81Google Scholar
  85. 85.
    Ryuzaki S, Onoe J (2013) Nano Rev 4:21055Google Scholar
  86. 86.
    Lin Y, Lim JA, Wei Q, Mannsfeld SCB, Briseno AL, Watkins JJ (2012) Chem Mater 24:622Google Scholar
  87. 87.
    Sahu D, Padhy H, Patra D, Kekuda D, Chu CW, Chiang IH, Lin HC (2010) Polymer 51:6182Google Scholar
  88. 88.
    Siram RBK, Tandy K, Horecha M, Formanek P, Stamm M, Gevorgyan S, Krebs FC, Kiriy A, Meredith P, Burn PL, Namdas EB, Patil S (2011) J Phys Chem C 115:14369Google Scholar
  89. 89.
    Ruiz-Carretero A, Aytun TA, Bruns CJ, Newcomb CJ, Tsai WW, Stupp SI (2013) J Mater Chem A 1:11674Google Scholar
  90. 90.
    Kim KH, Yu H, Kang H, Kang DJ, Cho CH, Cho HH, Oh JH, Kim BJ (2013) J Mater Chem A 1:14538Google Scholar
  91. 91.
    Schulze BM, Shewmon NT, Zhang J, Watkins DL, Mudrick JP, Cao W, Zerdan RB, Quartararo AJ, Ghiviriga I, Xue J, Castellano RK (2014) J Mater Chem A 2:1541Google Scholar
  92. 92.
    Gopalan SA, Seo MH, Anantha-Iyengar G, Han B, Lee SW, Kwon DH, Leed SH, Kang SW (2014) J Mater Chem A 2:2174Google Scholar
  93. 93.
    Kumar RJ, Churches QI, Subbiah J, Gupta A, Ali A, Evans RA, Holmes AB (2013) Chem Commun 49:6552Google Scholar
  94. 94.
    Kumar RJ, Subbiah J, Holmes AB (2013) Beilstein J Org Chem 9:1102Google Scholar
  95. 95.
    El-ghayoury A, Schenning APHJ, van Hal PA, van Duren JKJ, Janssen RAJ, Meijer EW (2001) Angew Chem Int Ed 40:3660Google Scholar
  96. 96.
    Jonkheijm P, van Duren JKJ, Kemerink M, Janssen RAJ, Schenning APHJ, Meijer EW (2006) Macromolecules 39:784Google Scholar
  97. 97.
    Chen G, Sasabe H, Sasaki Y, Katagiri H, Wang XF, Sano T, Hong Z, Yang Y, Kido J (2014) Chem Mater 26:1356Google Scholar
  98. 98.
    Liu C, Li Y, Li C, Li W, Zhou C, Liu H, Bo Z, Li Y (2009) J Phys Chem C 113:21970Google Scholar
  99. 99.
    Xue P, Lu R, Zhao L, Xu D, Zhang X, Li K, Song Z, Yang X, Takafuji M, Ihara H (2010) Langmuir 26:6669Google Scholar
  100. 100.
    Yao K, Chen L, Li F, Wang P, Chen Y (2012) J Phys Chem C 116:714Google Scholar
  101. 101.
    Li F, Yager KG, Dawson NM, Yang J, Malloy KJ, Qin Y (2013) Macromolecules 46:9021Google Scholar
  102. 102.
    Worfolk BJ, Rider DA, Elias AL, Thomas M, Harris KD, Buriak JM (2011) Adv Funct Mater 21:1816Google Scholar
  103. 103.
    Geffroy B, le Roy P, Prat C (2006) Polym Int 55:572Google Scholar
  104. 104.
    Sasabe H, Kido J (2011) Chem Mater 23:621Google Scholar
  105. 105.
    Xie Z, Yang B, Li F, Cheng G, Liu L, Yang G, Xu H, Ye L, Hanif M, Liu S, Ma D, Ma Y (2005) J Am Chem Soc 127:14152Google Scholar
  106. 106.
    Du C, Ye S, Chen J, Guo Y, Liu Y, Lu K, Liu Y, Qi T, Gao X, Shuai Z, Yu G (2009) Chem Eur J 15:8275Google Scholar
  107. 107.
    Zhao Z, Chen S, Lam JWY, Wang Z, Lu P, Mahtab F, Sung HHY, Williams ID, Ma Y, Kwok HS, Tang BZ (2011) J Mater Chem 21:7210Google Scholar
  108. 108.
    Jiang T, Jiang Y, Qin W, Chen S, Lu Y, Lam JWY, He B, Ping Lu P, Sung HHY, Williams ID, Kwok HS, Zhao Z, Qiu H, Tang BZ (2012) J Mater Chem 22:20266Google Scholar
  109. 109.
    Bonardi L, Kanaan H, Camerel F, Jolinat P, Retailleau P, Ziessel R (2008) Adv Funct Mater 18:401Google Scholar
  110. 110.
    Yokoyama D, Sasabe H, Furukawa Y, Adachi C, Kido J (2011) Adv Funct Mater 21:1375Google Scholar
  111. 111.
    Niu C, Zhao L, Fang T, Deng X, Ma H, Zhang J, Na N, Han J, Ouyang J (2014) Langmuir 30:2351Google Scholar
  112. 112.
    Abbel R, Grenier C, Pouderoijen MJ, Stouwdam JW, Leclère PELG, Sijbesma RP, Meijer EW, Schenning APHJ (2009) J Am Chem Soc 131:833Google Scholar
  113. 113.
    Braga D, Horowitz G (2009) Adv Mater 21:1473Google Scholar
  114. 114.
    Bonini M, Zalewski L, Orgiu E, Breiner T, Dötz F, Kastler M, Samorì P (2011) J Phys Chem C 115:9753Google Scholar
  115. 115.
    Lam KH, Foong TRB, Zhang J, Grimsdale AC, Lam YM (2014) Org Electronics 15:1592Google Scholar
  116. 116.
    Jeong SM, Kim TG, Jung E, Park JW (2013) ACS Appl Mater Interfaces 5:6837Google Scholar
  117. 117.
    Gsänger M, Oh JH, Könemann M, Höffken HW, Krause AM, Bao Z, Würthner F (2010) Angew Chem Int Ed 49:740Google Scholar
  118. 118.
    Glowacki ED, Irimia-Vladu M, Kaltenbrunner M, Gasiorowski J, White MS, Monkowius U, Romanazzi G, Suranna GP, Mastrorilli P, Sekitani T, Bauer S, Someya T, Torsi L, Sariciftci NS (2013) Adv Mater 25:1563Google Scholar
  119. 119.
    Liang Z, Tang Q, Liu J, Li J, Yan F, Miao Q (2010) Chem Mater 22:6438Google Scholar
  120. 120.
    Black HT, Perepichka DF (2014) Angew Chem Int Ed 53:2138Google Scholar
  121. 121.
    Lee J, Park JH, Lee YT, Jeon PJ, Lee HS, Nam SH, Yi Y, Lee Y, Im S (2014) ACS Appl Mater Interfaces 6:4965Google Scholar
  122. 122.
    Seki T, Maruya Y, Nakayama K, Karatsu T, Kitamura A, Yagai S (2011) Chem Commun 47:12447Google Scholar
  123. 123.
    See KC, Becknell A, Miragliotta J, Katz HE (2007) Adv Mater 19:3322Google Scholar
  124. 124.
    Sun B, Hong W, Aziz H, Li Y (2012) J Mater Chem 22:18950Google Scholar
  125. 125.
    Suna Y, Nishida J, Fujisaki Y, Yamashita Y (2012) Org Lett 14:3356Google Scholar
  126. 126.
    Chen S, Sun B, Hong W, Yan Z, Aziz H, Meng Y, Hollinger J, Seferos DS, Li Y (2014) J Mater Chem C 2:1683Google Scholar
  127. 127.
    Kolhe NB, Devi RN, Senanayak SP, Jancy B, Narayan KS, Asha SK (2012) J Mater Chem 22:15235Google Scholar
  128. 128.
    DiBenedetto SA, Frattarelli D, Ratner MA, Facchetti A, Marks TJ (2008) J Am Chem Soc 130:7528Google Scholar
  129. 129.
    Rancatore BJ, Mauldin CE, Tung SH, Wang C, Hexemer A, Strzalka J, Fréchet JMJ, Xu T (2010) ACS Nano 4:2721Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations