Hydrogen Bonding for the Self-assembly of Organogels and Hydrogels

  • Tao YiEmail author
  • Xudong Yu
  • Liming Chen
Part of the Lecture Notes in Chemistry book series (LNC, volume 88)


In this chapter, supramolecular gel networks containing hydrogen bonding are discussed to demonstrate the importance of complementary hydrogen bonding for the formation of gels and the resulting behavior. The catalogs of the low molecular mass organogelators (LMOGs) for the formation of hydrogen bonding based gels are summarized. Some of the gels show dynamic and reversible properties controlled by the stimuli. Upon stimulation, the gelators supply instant and in situ gelation for organic solvents or water with different modes and outcomes of self-assembly. These supramolecular gels offer a wide range of applications in the fields such as smart and adaptive materials, switches, drug control and release, and tissue engineering.


Gelation Property Fluoride Anion Tetracycline Hydrochloride Supramolecular Hydrogel Thixotropic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank for the financial support of the National Basic Research Program of China (2013CB733700), the China National Funds for Distinguished Young Scientists (21125104), National Natural Science Foundation of China (51373039 and 21301047), Specialized Research Fund for the Doctoral Program of Higher Education (20120071130008), Program for Innovative Research Team in University (IRT1117), Program of Shanghai Subject Chief Scientist (12XD1405900), and Shanghai Leading Academic Discipline Project (B108).


  1. 1.
    Terech P, Weiss RG (1997) Chem Rev 97:3133CrossRefGoogle Scholar
  2. 2.
    Estroff LA, Hamilton AD (2004) Chem Rev 104:1201CrossRefGoogle Scholar
  3. 3.
    Abdallah DJ, Weiss RG (2000) Adv Mater 12:1237CrossRefGoogle Scholar
  4. 4.
    Segarra-Maset MD, Nebot VJ, Miravet JF, Escuder B (2013) Chem Soc Rev 42:7086CrossRefGoogle Scholar
  5. 5.
    Yang X, Zhang G, Zhang D (2012) J Mater Chem 22:38CrossRefGoogle Scholar
  6. 6.
    Steed JW (2010) Chem Soc Rev 39:3686CrossRefGoogle Scholar
  7. 7.
    Zhang M, Sun S, Yu X, Cao X, Zou Y, Yi T (2010) Chem Commun 46:3553CrossRefGoogle Scholar
  8. 8.
    Zhang M, Meng L, Cao X, Jiang M, Yi T (2012) Soft Matter 8:4495Google Scholar
  9. 9.
    Hirst AR, Escuder B, Miravet JF, Smith DK (2008) Angew Chem Int Ed 47:8002CrossRefGoogle Scholar
  10. 10.
    Duan PF, Qing L, Zhu XF, Liu MH (2011) Chem Eur J 17:6389CrossRefGoogle Scholar
  11. 11.
    Whitesides GM, Mathias JP, Seto CT (1991) Science 254:1312CrossRefGoogle Scholar
  12. 12.
    Ishi-i T, Kuwahara R, Takata A, Jeong Y, Sakurai K, Mataka S (2006) Chem Eur J 12:763CrossRefGoogle Scholar
  13. 13.
    Yagai S, Aonuma H, Kikkawa Y, Kubota S, Karatsu T, Kitamura A, Mahesh S, Ajayaghosh A (2010) Chem Eur J 16:8652CrossRefGoogle Scholar
  14. 14.
    Bada JL (1995) Nature 374:594CrossRefGoogle Scholar
  15. 15.
    Vemula PK, John G (2008) Acc Chem Res 41:769CrossRefGoogle Scholar
  16. 16.
    Zhan CL, Gao P, Liu MH (2005) Chem Commun (4):462Google Scholar
  17. 17.
    Li Y, Zhou F, Wen Y, Liu K, Chen L, Mao Y, Yang S, Yi T (2014) Soft Matter 10:3077CrossRefGoogle Scholar
  18. 18.
    Nanda J, Biswas A, Banerjee A (2013) Soft Matter 9:4198CrossRefGoogle Scholar
  19. 19.
    Bardelang D, Camerel F, Margeson JC, Leek D, Schmutz M, Zaman MB, Yu K, Soldatov DV, Ziessel R, Ratcliffe CI, Ripmeester JA (2008) J Am Chem Soc 130:3313Google Scholar
  20. 20.
    Hou XY, Gao D, Yan J, Ma Y, Liu K, Fang Y (2011) Langmuir 27:12156CrossRefGoogle Scholar
  21. 21.
    Yu X, Cao X, Chen L, Lan H, Liu B, Yi T (2012) Soft Matter 8:3329CrossRefGoogle Scholar
  22. 22.
    Maity I, Rasale DB, Das AK (2012) Soft Matter 8:5301CrossRefGoogle Scholar
  23. 23.
    Xie Z, Zhang A, Ye L, Feng ZG (2009) Soft Matter 5:1474CrossRefGoogle Scholar
  24. 24.
    Kato T, Kondo G, Hanabusa K (1998) Chem Lett (3):193Google Scholar
  25. 25.
    Jung JH, Ono Y, Shinkai S (2000) Chem Eur J 6:4552CrossRefGoogle Scholar
  26. 26.
    de Loos M, van Esch J, Kellogg RM, Feringa BL (2001) Angew Chem Int Ed 40:613CrossRefGoogle Scholar
  27. 27.
    Kobayashi S, Hamasaki N, Suzuki M, Kimura M, Shirai H, Hanabusa K (2002) J Am Chem Soc 124:6550CrossRefGoogle Scholar
  28. 28.
    Xiao S, Zou Y, Yu M, Yi T, Zhou Y, Li F, Huang C (2007) Chem Commun (45):4758Google Scholar
  29. 29.
    Zhang M, Wang B, Jiang T, Jiang M, Yi T (2012) CrystEngComm 14:8057CrossRefGoogle Scholar
  30. 30.
    Davis JT, Spada GP (2007) Chem Soc Rev 36:296CrossRefGoogle Scholar
  31. 31.
    Davis JT (2004) Angew Chem Int Ed 43:668CrossRefGoogle Scholar
  32. 32.
    Lena S, Masiero S, Pieraccini S, Spada GP (2008) Mini-Rev Org Chem 5:262CrossRefGoogle Scholar
  33. 33.
    Meng L, Liu Ke, Mo S, Mao Y, Yi T (2013) Org Biomol Chem 11:1525CrossRefGoogle Scholar
  34. 34.
    George M, Tan G, John VT, Weiss RG (2005) Chem Eur J 11:3243CrossRefGoogle Scholar
  35. 35.
    Ávalos M, Babiano R, Cintas P, Gómez A, Jiménez JL, Lozano M, Ortiz AL, Palacios JC, Pinazo A (2008) Chem Eur J 14:5656CrossRefGoogle Scholar
  36. 36.
    van Esch J, Schoonbeek F, de Loos M, Kooijman H, Spek AL, Kellogg RM, Feringa BL (1999) Chem Eur J 5:937CrossRefGoogle Scholar
  37. 37.
    Zhou Y, Yi T, Li T, Zhou Z, Zhou Z, Li F, Huang W, Huang C (2006) Chem Mater 18:2974CrossRefGoogle Scholar
  38. 38.
    Bhuniya S, Park SM, Kim BH (2005) Org Lett 7:1741CrossRefGoogle Scholar
  39. 39.
    Tan H, Chu CR, Payne KA, Marra KG (2009) Biomaterials 30:2499CrossRefGoogle Scholar
  40. 40.
    Temenoff JS, Mikos AG (2000) Biomaterials 21:2405CrossRefGoogle Scholar
  41. 41.
    Gong Z, Yang Y, Ren Q, Chen X, Shao Z (2012) Soft Matter 8:2875CrossRefGoogle Scholar
  42. 42.
    Barbucci R, Giardino R, Cagna MD, Golinia L, Pasqui D (2010) Soft Matter 6:3524CrossRefGoogle Scholar
  43. 43.
    Gronwald O, Shinkai S (2001) Chem Eur J 7:4328CrossRefGoogle Scholar
  44. 44.
    Friggeri A, Gronwald O, Bommel KJC, Shinkai S, Reinhoudt DN (2002) J Am Chem Soc 124:10754CrossRefGoogle Scholar
  45. 45.
    Ikeda M, Ueno S, Matsumoto S, Shimizu Y, Komatsu H, Kusumoto K, Hamachi I (2008) Chem Eur J 14:10808CrossRefGoogle Scholar
  46. 46.
    Tamaru S, Kiyonaka S, Hamachi I (2005) Chem Eur J 11:7294CrossRefGoogle Scholar
  47. 47.
    Vidyasagar A, Handore K, Sureshan KM (2011) Angew Chem Int Ed 50:8021CrossRefGoogle Scholar
  48. 48.
    Partridge KS, Smith DK, Dykes GM, McGrail PT (2001) Chem Commun (4):319Google Scholar
  49. 49.
    Dykes GM, Smith DK (2003) Tetrahedron 59:3999CrossRefGoogle Scholar
  50. 50.
    Hirst AR, Smith DK, Feiters MC, Geurts HPM, Wright AC (2003) J Am Chem Soc 125:9010CrossRefGoogle Scholar
  51. 51.
    Hirst AR, Smith DK, Feiters MC, Geurts HPM (2004) Langmuir 20:7070CrossRefGoogle Scholar
  52. 52.
    Trivedi DR, Ballabh A, Dastidar P, Ganguly B (2004) Chem Eur J 10:5311CrossRefGoogle Scholar
  53. 53.
    Trivedi DR, Dastidar P (2006) Chem Mater 18:1470CrossRefGoogle Scholar
  54. 54.
    Gonzalez YI, Kaler EW (2005) Langmuir 21:7191CrossRefGoogle Scholar
  55. 55.
    Basit H, Pal A, Sen S, Bhattacharya S (2008) Chem Eur J 14:6534CrossRefGoogle Scholar
  56. 56.
    Lee HY, Nam SR, Hong JI (2007) J Am Chem Soc 129:1040CrossRefGoogle Scholar
  57. 57.
    Xia Q, Mao Y, Wu J, Shu T, Yi T (2014) J Mater Chem C 2:1854CrossRefGoogle Scholar
  58. 58.
    Kiyonaka S, Sugiyasu K, Shinkai S, Hamachi I (2002) J Am Chem Soc 124:10954CrossRefGoogle Scholar
  59. 59.
    Zhou SL, Matsumoto S, Tian HD, Yamane H, Ojida A, Kiyonaka S, Hamachi I (2005) Chem Eur J 11:1130CrossRefGoogle Scholar
  60. 60.
    Zhang Y, Gu H, Yang Z, Yu B (2003) J Am Chem Soc 125:13680CrossRefGoogle Scholar
  61. 61.
    Sangeetha NM, Maitra U (2005) Chem Soc Rev 34:821CrossRefGoogle Scholar
  62. 62.
    Yang Z, Xu B (2007) J Mater Chem 17:2385CrossRefGoogle Scholar
  63. 63.
    Chen L, Wu J, Yuwen L, Shu T, Xu M, Zhang M, Yi T (2009) Langmuir 25:8434CrossRefGoogle Scholar
  64. 64.
    Yu X, Liu Q, Xu X, Lan H, Cao X, Chen L, Liu B, Yi T (2012) Acta Chim Sinica 70:2016CrossRefGoogle Scholar
  65. 65.
    Anderson KM, Day GM, Paterson MJ, Byrne P, Clarke N, Steed JW (2008) Angew Chem Int Ed 47:1058CrossRefGoogle Scholar
  66. 66.
    Jeong SW, Murata K, Shinkai S (1996) Supramol Sci 3:83CrossRefGoogle Scholar
  67. 67.
    Mahesh S, Thirumalai R, Yagai S, Kitamura A, Ajayaghosh A (2009) Chem Commun (40):5984Google Scholar
  68. 68.
    Cao X, Zhou J, Zou Y, Zhang M, Yu X, Zhang S, Yi T, Huang C (2011) Langmuir 27:5090CrossRefGoogle Scholar
  69. 69.
    Sumiyoshi T, Nishimura K, Nakano M, Handa T, Miwa Y, Tomioka K (2003) J Am Chem Soc 125:12137CrossRefGoogle Scholar
  70. 70.
    Piepenbrock MM, Lloyd GO, Clarke N, Steed JW (2008) Chem Commun (23):2644Google Scholar
  71. 71.
    Wu J, Yi T, Shu T, Yu M, Zhou Z, Xu M, Zhou Y, Zhang H, Han J, Li F, Huang C (2008) Angew Chem Int Ed 47:1063CrossRefGoogle Scholar
  72. 72.
    Wu J, Yi T, Xia Q, Zou Y, Liu F, Dong J, Shu T, Li F, Huang C (2009) Chem Eur J 15:6234CrossRefGoogle Scholar
  73. 73.
    Wang Q, Wu J, Gong Z, Zou Y, Yi T, Huang C (2010) Soft Matter 6:2679CrossRefGoogle Scholar
  74. 74.
    Yu X, Liu Q, Wu J, Zhang M, Cao X, Zhang S, Wang Q, Chen L, Yi T (2010) Chem Eur J 16:9099CrossRefGoogle Scholar
  75. 75.
    Lloyd GO, Steed JW (2009) Nat Chem 1:437CrossRefGoogle Scholar
  76. 76.
    Maeda H (2008) Chem Eur J 14:11274CrossRefGoogle Scholar
  77. 77.
    Yang H, Yi T, Zhou Z, Zhou Y, Wu J, Xu M, Li F, Huang C (2007) Langmuir 23:8224CrossRefGoogle Scholar
  78. 78.
    Wang C, Zhang D, Zhu D (2007) Langmuir 23:1478CrossRefGoogle Scholar
  79. 79.
    Yamanaka M, Nakamura T, Nakagawa T, Itagaki H (2007) Tetrahedron Lett 48:8990CrossRefGoogle Scholar
  80. 80.
    Stanley E, Clarke N, Anderson KM, Elder JA, Lenthall JT, Steed JW (2006) Chem Commun (30):3199Google Scholar
  81. 81.
    Lodish H (2003) Molecular cell biology. W. H. Freeman Co., New YorkGoogle Scholar
  82. 82.
    Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Katoand N, Hamachi I (2004) Nat Mater 3:58CrossRefGoogle Scholar
  83. 83.
    Yang Z, Xu B (2004) Chem Commun (21):2424Google Scholar
  84. 84.
    Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) J Am Chem Soc 128:1070CrossRefGoogle Scholar
  85. 85.
    Yang Z, Liang G, Wang L, Xu B (2006) J Am Chem Soc 128:3038CrossRefGoogle Scholar
  86. 86.
    Yang Z, Ho PK, Liang G, Chow KH, Wang Q, Cao Y, Guo Z, Xu B (2007) J Am Chem Soc 129:266CrossRefGoogle Scholar
  87. 87.
    Cravotto G, Cintas P (2012) Chem Sci 3:295CrossRefGoogle Scholar
  88. 88.
    Cravotto G, Cintas P (2009) Chem Soc Rev 38:2684CrossRefGoogle Scholar
  89. 89.
    Isozaki K, Takaya H, Naota T (2007) Angew Chem Int Ed 46:2855CrossRefGoogle Scholar
  90. 90.
    Deng C, Fang R, Guan Y, Jiang J, Lin C, Wang L (2012) Chem Commun 48:7973CrossRefGoogle Scholar
  91. 91.
    Yu X, Chen L, Zhang M, Yi T (2014) Chem Soc Rev 47:5346CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemistry, and Concerted Innovation Center of Chemistry for Energy MaterialsFudan UniversityShanghaiChina
  2. 2.College of ScienceHebei University of Science and TechnologyShijiazhuangChina

Personalised recommendations