Advertisement

Hydrogen Bonding in Supramolecular Nanoporous Materials

  • Huub P. C. van Kuringen
  • Albertus P. H. J. SchenningEmail author
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 88)

Abstract

This chapter provides an overview of the use of hydrogen bonds for the construction of nanoporous materials. These materials attract a great deal of interest because of their large surface area to volume ratio and their applications in areas such as filtration, separation, adsorption, catalysis, and ion conduction. Organic materials are especially appealing for these applications, because their properties can be tailored. The use of supramolecular interactions is required to control the organization of materials at the molecular level. Hydrogen bonds are ideal supramolecular interactions for the construction of these nanoporous materials, thanks to their directionality and reversibility. The directionality causes the positioning molecules in such a way that voids have been created in between the molecules, such as in two- and three-dimensional hydrogen bonded organic frameworks. In a second approach, hydrogen bonded template molecules have been removed from a polymer to create pores. This method is successfully applied to hydrogen bonded block copolymers and liquid crystalline polymers.

Keywords

Methylene Blue Block Copolymer Liquid Crystalline Phase Liquid Crystalline Polymer Amino Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Ackowledgement

The authors would like to acknowledge the many discussions and contributions with all of our former and current colleagues. Their names are given in the references cited. A special word of thank is expressed to Dick Broer for many inspiring discussions and collaborations. The research of Eindhoven University of Technology forms part of the Dutch Polymer Institute (DPI), project 742.

References

  1. 1.
  2. 2.
    Schenning APHJ, Gonzalez-Lemus YC, Shishmanova IK, Broer DJ (2011) Liq Cryst 38:1627CrossRefGoogle Scholar
  3. 3.
    Holst JR, Trewin A, Cooper AI (2010) Nat Chem 2:915CrossRefGoogle Scholar
  4. 4.
    Tian J, Thallapally PK, McGrail BP (2012) CrystEngComm 14:1909CrossRefGoogle Scholar
  5. 5.
    Mastalerz M (2012) Chem Eur J 18:10082CrossRefGoogle Scholar
  6. 6.
    Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2007) Nature 445:749CrossRefGoogle Scholar
  7. 7.
    Chan S, Horner SR, Fauchet PM, Miller BL (2001) J Am Chem Soc 123:11797CrossRefGoogle Scholar
  8. 8.
    Urbanova V, Walcarius A (2014) Z Anorg Allg Chem 640:537CrossRefGoogle Scholar
  9. 9.
    Na K, Choi M, Ryoo R (2013) Micropor Mesopor Mater 166:3CrossRefGoogle Scholar
  10. 10.
    Zhang JT, Li CM (2012) Chem Soc Rev 41:7016CrossRefGoogle Scholar
  11. 11.
    Duan R, Xia F, Jiang L (2013) ACS Nano 7:8344CrossRefGoogle Scholar
  12. 12.
    Abetz V, Hillmyer M (2005) Nanoporous materials from block copolymer precursors. In: Block copolymers II, vol 190. Advances in polymer science. Springer Berlin, HeidelbergGoogle Scholar
  13. 13.
    Lehn JM (1995) Supramolecular chemistry: concept and perspectives. VCH, WeinheimCrossRefGoogle Scholar
  14. 14.
    Meek ST, Greathouse JA, Allendorf MD (2011) Adv Mater 23:249CrossRefGoogle Scholar
  15. 15.
    Kitagawa S, Uemura K (2005) Chem Soc Rev 34:109CrossRefGoogle Scholar
  16. 16.
    Gonzalez-Rodriguez D, Schenning APHJ (2011) Chem Mater 23:310CrossRefGoogle Scholar
  17. 17.
    Kudernac T, Lei S, Elemans JAAW, De Feyter S (2009) Chem Soc Rev 38:402CrossRefGoogle Scholar
  18. 18.
    Madueno R, Raisanen MT, Silien C, Buck M (2008) Nature 454:618CrossRefGoogle Scholar
  19. 19.
    Venkataraman D, Lee S, Zhang JS, Moore JS (1994) Nature 371:591CrossRefGoogle Scholar
  20. 20.
    Griessl S, Lackinger M, Edelwirth M, Hietschold M, Heckl WM (2002) Single Mol 3:25CrossRefGoogle Scholar
  21. 21.
    Lu J, Lei SB, Zeng QD, Kang SZ, Wang C, Wan LJ, Bai CL (2004) J Phys Chem B 108:5161CrossRefGoogle Scholar
  22. 22.
    Roy B, Bairi P, Nandi AK (2014) RSC Adv 4:1708CrossRefGoogle Scholar
  23. 23.
    Theobald JA, Oxtoby NS, Phillips MA, Champness NR, Beton PH (2003) Nature 424:1029CrossRefGoogle Scholar
  24. 24.
    Antharjanam PKS, Prasad E (2010) New J Chem 34:420CrossRefGoogle Scholar
  25. 25.
    Wuest JD (2005) Chem Commun 47:5830CrossRefGoogle Scholar
  26. 26.
    Bojdys MJ, Briggs ME, Jones JTA, Adams DJ, Chong SY, Schmidtmann M, Cooper AI (2011) J Am Chem Soc 133:16566CrossRefGoogle Scholar
  27. 27.
    Wang X, Simard M, Wuest JD (1994) J Am Chem Soc 116:12119CrossRefGoogle Scholar
  28. 28.
    Maly KE, Gagnon E, Maris T, Wuest JD (2007) J Am Chem Soc 129:4306CrossRefGoogle Scholar
  29. 29.
    Li P, He Y, Guang J, Weng L, Zhao JCG, Xiang S, Chen B (2014) J Am Chem Soc 136:547CrossRefGoogle Scholar
  30. 30.
    Brunklaus G, Koch A, Sebastiani D, Spiess HW (2007) Phys Chem Chem Phys 9:4545CrossRefGoogle Scholar
  31. 31.
    Bates FS, Fredrickson GH (1990) Annu Rev Phys Chem 41:525CrossRefGoogle Scholar
  32. 32.
    Abetz V, Simon PFW (2005) Phase behaviour and morphologies of block copolymers. In: Abetz V (ed) Block Copolymers I, vol 189. Advances in Polymer ScienceGoogle Scholar
  33. 33.
    Venkataraman D, Yurt S, Venkatraman BH, Gavvalapalli N (2010) J Phy Chem Lett 1:947CrossRefGoogle Scholar
  34. 34.
    Lee JS, Hirao A, Nakahama S (1988) Macromolecules 21:274CrossRefGoogle Scholar
  35. 35.
    Crossland EJW, Kamperman M, Nedelcu M, Ducati C, Wiesner U, Smilgies DM, Toombes GES, Hillmyer MA, Ludwigs S, Steiner U, Snaith HJ (2008) Nano Lett 9:2807CrossRefGoogle Scholar
  36. 36.
    Crossland EJW, Nedelcu M, Ducati C, Ludwigs S, Hillmyer MA, Steiner U, Snaith HJ (2008) Nano Lett 9:2813CrossRefGoogle Scholar
  37. 37.
    Park S, Wang JY, Kim B, Xu J, Russell TP (2008) ACS Nano 2:766CrossRefGoogle Scholar
  38. 38.
    Chen SY, Huang Y, Tsiang RC (2008) J Polym Sci Pol Chem 46:1964CrossRefGoogle Scholar
  39. 39.
    Mansky P, Harrison CK, Chaikin PM, Register RA, Yao N (1996) Appl Phys Lett 68:2586CrossRefGoogle Scholar
  40. 40.
    Joo W, Yang SY, Kim JK, Jinnai H (2008) Langmuir 24:12612CrossRefGoogle Scholar
  41. 41.
    Li MQ, Douki K, Goto K, Li XF, Coenjarts C, Smilgies DM, Ober CK (2004) Chem of Mater 16:3800CrossRefGoogle Scholar
  42. 42.
    Ikkala O, ten Brinke G (2002) Science 295:2407CrossRefGoogle Scholar
  43. 43.
    Maki-Ontto R, de Moel K, de Odorico W, Ruokolainen J, Stamm M, ten Brinke G, Ikkala O (2001) Adv Mater 13:117CrossRefGoogle Scholar
  44. 44.
    Sidorenko A, Tokarev I, Minko S, Stamm M (2003) J Am Chem Soc 125:12211CrossRefGoogle Scholar
  45. 45.
    du Sart GG, Vukovic I, Vukovic Z, Polushkin E, Hiekkataipale P, Ruokolainen J, Loos K, ten Brinke G (2011) Macromol Rapid Comm 32:366CrossRefGoogle Scholar
  46. 46.
    Gamys CG, Vlad A, Bertrand O, Gohy JF (2012) Macromol Chem Phys 213:2075CrossRefGoogle Scholar
  47. 47.
    Lu GQ, Zhao XS (2004) Nanoporous Materials, Science and Engineering. Imperial College Press 4Google Scholar
  48. 48.
    Vukovic I, Punzhin S, Vukovic Z, Onck P, De Hosson JTM, ten Brinke G, Loos K (2011) ACS Nano 5:6339CrossRefGoogle Scholar
  49. 49.
    Kosonen H, Valkama S, Nykanen A, Toivanen M, ten Brinke G, Ruokolainen J, Ikkala O (2006) Adv Mater 18:201CrossRefGoogle Scholar
  50. 50.
    Valkama S, Nykanen A, Kosonen H, Ramani R, Tuomisto F, Engelhardt P, ten Brinke G, Ikkala O, Ruokolainen J (2007) Adv Funct Mater 17:183CrossRefGoogle Scholar
  51. 51.
    Liang CD, Hong KL, Guiochon GA, Mays JW, Dai S (2004) Angew Chem Int Ed 43:5785CrossRefGoogle Scholar
  52. 52.
    Fu Y, Bai SL, Cui SX, Qiu DL, Wang ZQ, Zhang X (2002) Macromolecules 35:9451CrossRefGoogle Scholar
  53. 53.
    Zhang HY, Fu Y, Wang D, Wang LY, Wang ZQ, Zhang X (2003) Langmuir 19:8497CrossRefGoogle Scholar
  54. 54.
    Bai SL, Wang ZQ, Zhang X, Wang B (2004) Langmuir 20:11828CrossRefGoogle Scholar
  55. 55.
    Li Q, Quinn JF, Caruso F (2005) Adv Mater 17:2058CrossRefGoogle Scholar
  56. 56.
    Dierendonck M, Fierens K, De Rycke R, Lybaert L, Maji S, Zhang Z, Zhang Q, Hoogenboom R, Lambrecht BN, Grooten J, Remon JP, De Koker S, De Geest BG (2014) Adv Funct Mater 24:4634CrossRefGoogle Scholar
  57. 57.
    Reddy GSM, Jayaramudu J, Varaprasad K, Sadiku R, Jailani SA, Aderibigbe BA (2014) Nanostructured Liquid Crystals-Chapter 9. In: Thomas S, Shanks R, Chandrasekharakurup S (eds) Nanostructured Polymer Blends. William Andrew Publishing, OxfordGoogle Scholar
  58. 58.
    Kato T (2010) Angew Chem Int Ed 49:7847CrossRefGoogle Scholar
  59. 59.
    Liu D, Broer DJ (2014) Langmuir ASAP articleGoogle Scholar
  60. 60.
    Gin DL, Lu X, Nemade PR, Pecinovsky CS, Xu Y, Zhou M (2006) Adv Funct Mater 16:865CrossRefGoogle Scholar
  61. 61.
    Kato T, Frechet JMJ (1989) J Am Chem Soc 111:8533CrossRefGoogle Scholar
  62. 62.
    Broer DJ, Bastiaansen CMW, Debije MG, Schenning APHJ (2012) Angew Chem Int Ed 51:7102CrossRefGoogle Scholar
  63. 63.
    Lee HK, Lee H, Ko YH, Chang YJ, Oh NK, Zin WC, Kim K (2001) Angew Chem Int Ed 40:2669CrossRefGoogle Scholar
  64. 64.
    Ishida Y (2011) Materials 4:183CrossRefGoogle Scholar
  65. 65.
    Ishida Y, Amano S, Saigo K (2003) Chem Commun 18:2338Google Scholar
  66. 66.
    Ishida Y, Amano S, Iwahashi N, Saigo K (2006) J Am Chem Soc 128:13068CrossRefGoogle Scholar
  67. 67.
    Amano S, Ishida Y, Saigo K (2007) Chem-Eur J 13:5186CrossRefGoogle Scholar
  68. 68.
    Ishida Y, Sakata H, Achalkumar AS, Yamada K, Matsuoka Y, Iwahashi N, Amano S, Saigo K (2011) Chem-Eur J 17:14752CrossRefGoogle Scholar
  69. 69.
    Lee JH (2014) Liq Cryst 41:738CrossRefGoogle Scholar
  70. 70.
    Sakai N, Kamikawa Y, Nishii M, Matsuoka T, Kato T, Matile S (2006) J Am Chem Soc 128:2218CrossRefGoogle Scholar
  71. 71.
    Kato T, Yasuda T, Kamikawa Y, Yoshio M (2009) Chem Commun 7:729CrossRefGoogle Scholar
  72. 72.
    Percec V, Dulcey AE, Balagurusamy VSK, Miura Y, Smidrkal J, Peterca M, Nummelin S, Edlund U, Hudson SD, Heiney PA, Hu DA, Magonov SN, Vinogradov SA (2004) Nature 430:764CrossRefGoogle Scholar
  73. 73.
    Fitie CFC, Tomatsu I, Byelov D, de Jeu WH, Sijbesma RP (2008) Chem Mater 20:2394CrossRefGoogle Scholar
  74. 74.
    Kishikawa K, Hirai A, Kohmoto S (2008) Chem Mater 20:1931CrossRefGoogle Scholar
  75. 75.
    Gonzalez CL, Bastiaansen CWM, Lub J, Loos J, Lu K, Wondergem HJ, Broer DJ (2008) Adv Mater 20:1246CrossRefGoogle Scholar
  76. 76.
    van Kuringen HPC, Eikelboom GM, Shishmanova IK, Broer DJ, Schenning APHJ (2014) Adv Funct Mater 24:5054Google Scholar
  77. 77.
    Shishmanova IK, Bastiaansen CWM, Schenning APHJ, Broer DJ (2012) Chem Commun 48:4555CrossRefGoogle Scholar
  78. 78.
    Dasgupta D, Shishmanova IK, Ruiz-Carretero A, Lu K, Verhoeven MWGM, van Kuringen HPC, Portale G, Leclere P, Bastiaansen CWM, Broer DJ, Schenning APHJ (2013) J Am Chem Soc 135:10922CrossRefGoogle Scholar
  79. 79.
    Henmi M, Nakatsuji K, Ichikawa T, Tomioka H, Sakamoto T, Yoshio M, Kato T (2012) Adv Mater 24:2238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Huub P. C. van Kuringen
    • 1
  • Albertus P. H. J. Schenning
    • 1
    • 2
    Email author
  1. 1.Department of Chemical Engineering and ChemistryFunctional Organic Materials and DevicesEindhovenThe Netherlands
  2. 2.Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations