Advertisement

Abstract

The paper introduces an alternative method to analyze different learning styles among students. This method was developed as an alternative to more traditional methods such as hierarchical cluster analysis. The method was tested using a large data set (n = 868) which included participants completing a small e-module in addition to a small number of measures to assess learner characteristics. The resulting log files were analyzed using the new method. Results were similar to those observed using traditional methods. The method provides a new starting point for subsequent analysis and identification of learner differences using other information such as log files from e-learning and Massive Online Open Courses (MOOCs).

Keywords

E-learning log file analysis cluster analysis learner group differences learning strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Concannon, F., Flynn, A., Campbell, M.: What campus-based students think about the quality and benefits of e-learning. British Journal of Educational Technology 36, 501–512 (2005)CrossRefGoogle Scholar
  2. 2.
    Garrison, D.R.: E-Learning in the 21st Century: A Framework for Research and Practice. Routledge, New York (2011)Google Scholar
  3. 3.
    Selim, H.M.: Critical success factors for e-learning acceptance: Confirmatory factor models. Computers & Education 49, 396–413 (2007)CrossRefGoogle Scholar
  4. 4.
    Brusilovsky, P.: Adaptive Hypermedia. User Modeling and User-Adapted Interaction 11, 87–110 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hsiao, I.-H., Brusilovsky, P.: Motivational Social Visualizations for Personalized E-Learning. In: Ravenscroft, A., Lindstaedt, S., Kloos, C.D., Hernández-Leo, D. (eds.) EC-TEL 2012. LNCS, vol. 7563, pp. 153–165. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Jeske, D., Backhaus, J., Stamov Roßnagel, C.: Evaluation and revision of the Study Preference Questionnaire: Creating a user-friendly tool for nontraditional learners and learning environments. Learning and Individual Differences 30, 133–139 (2013)CrossRefGoogle Scholar
  7. 7.
    Greller, W., Drachsler, H.: Translating Learning into Numbers: A Generic Framework for Learning Analytics. Educational Technology & Society 15, 42–57 (2012)Google Scholar
  8. 8.
    Baker, R., Yacef, K.: The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining 1, 3–17 (2009)Google Scholar
  9. 9.
    Dyckhoff, A.L., Zielke, D., Bültmann, M., Chatti, M.A., Schroeder, U.: Design and Implementation of a Learning Analytics Toolkit for Teachers. Educational Technology & Society 15, 58–76 (2012)Google Scholar
  10. 10.
    Romero, C., Ventura, S.: Educational Data Mining: A Review of the State of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40, 601–618 (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, C.-M., Li, C.-Y., Chan, T.-Y., Jong, B.-S., Lin, T.-W.: Diagnosis of students’ online learning portfolios. In: Frontier. In: 37th Annual Education Conference-Global Engineering: Knowledge Without Borders, Opportunities Without Passports, FIE 2007, p. T3D–17. IEEE (2007)Google Scholar
  12. 12.
    Del Valle, R., Duffy, T.M.: Online learning: Learner characteristics and their approaches to managing learning. Instructional Science 37, 129–149 (2009)CrossRefGoogle Scholar
  13. 13.
    Lee, S.W.-Y.: Investigating students’ learning approaches, perceptions of online discussions, and students’ online and academic performance. Computers & Education 68, 345–352 (2013)CrossRefGoogle Scholar
  14. 14.
    Quinnell, R., May, E., Peat, M.: Conceptions of Biology and Approaches to Learning of First Year Biology Students: Introducing a technique for tracking changes in learner profiles over time. International Journal of Science Education 34, 1053–1074 (2012)CrossRefGoogle Scholar
  15. 15.
    Richardson, J.T.E.: Mental models of learning in distance education. British Journal of Educational Psychology 77, 253–270 (2007)CrossRefGoogle Scholar
  16. 16.
    Sparks, R.L., Patton, J., Ganschow, L.: Profiles of more and less successful L2 learners: A cluster analysis study. Learning and Individual Differences 22, 463–472 (2012)CrossRefGoogle Scholar
  17. 17.
    Wade, S.E., Trathen, W., Schraw, G.: An Analysis of Spontaneous Study Strategies. Reading Research Quarterly 25, 147–166 (1990)CrossRefGoogle Scholar
  18. 18.
    Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Cluster analysis. Wiley, Chichester (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2011)Google Scholar
  20. 20.
    Liu, B.: Web data mining: exploring hyperlinks, contents, and usage data. Springer, Berlin (2011)CrossRefGoogle Scholar
  21. 21.
    Ward, J.H.: Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association 58, 236–244 (1963)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Xiao, J., Zhang, Y., Jia, X., Li, T.: Measuring similarity of interests for clustering web-users. In: Proceedings of the 12th Australasian Database Conference, pp. 107–114. IEEE Computer Society, Washington, DC (2001)Google Scholar
  23. 23.
    Xiao, J., Zhang, Y.: Clustering of web users using session-based similarity measures. In: Proceedings of the 2001 International Conference on Computer Networks and Mobile Computing, pp. 223–228 (2001)Google Scholar
  24. 24.
    Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to data mining. Pearson/Addison-Wesley, Boston (2010)Google Scholar
  25. 25.
    Grossman, D.A., Frieder, O.: Information Retrieval: Algorithms and Heuristics. Springer, Dordrecht (2004)CrossRefGoogle Scholar
  26. 26.
    Xu, B., Recker, M.: Teaching Analytics: A Clustering and Triangulation Study of Digital Library User Data. Educational Technology & Society 15, 103–115 (2012)Google Scholar
  27. 27.
    Biggs, J., Kember, D., Leung, D.Y.P.: The revised two-factor Study Process Questionnaire: R-SPQ-2F. British Journal of Educational Psychology 71, 133–149 (2001)CrossRefGoogle Scholar
  28. 28.
    Ford, N.: Learning Styles and Strategies of Postgraduate Students. British Journal of Educational Technology 16, 65–77 (1985)CrossRefGoogle Scholar
  29. 29.
    Ford, N.: Cognitive styles and virtual environments. Journal of the American Society for Information Science 51, 543–557 (2000)CrossRefGoogle Scholar
  30. 30.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Cluster Analysis. Wiley, Hoboken (2005)Google Scholar
  31. 31.
    Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Dordrecht (2013)CrossRefzbMATHGoogle Scholar
  32. 32.
    Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 53–65 (1987)CrossRefzbMATHGoogle Scholar
  33. 33.
    Kumar, P., Krishna, P.R., Bapi, R.S., De, S.K.: Rough clustering of sequential data. Data & Knowledge Engineering 63, 183–199 (2007)CrossRefGoogle Scholar
  34. 34.
    Facca, F.M., Lanzi, P.L.: Mining interesting knowledge from weblogs: a survey. Data & Knowledge Engineering 53, 225–241 (2005)CrossRefGoogle Scholar
  35. 35.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on Web usage mining. Communications of the ACM 43, 142–151 (2000)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Arne Hendrik Schulz
    • 1
  • Debora Jeske
    • 2
  1. 1.Institute for Information Management BremenUniversity of BremenGermany
  2. 2.Psychology and Communication Technology (PaCT) Lab, Department of PsychologyNorthumbria UniversityUK

Personalised recommendations