Skip to main content

Stochastic Systems with Inputs

  • Chapter
Linear Stochastic Systems

Part of the book series: Series in Contemporary Mathematics ((SCMA,volume 1))

  • 2471 Accesses

Abstract

In this chapter we study the stochastic realization problem with inputs. Our aim is to provide procedures for constructing state space models for a stationary process y driven by an exogenous observable input signal u, also modeled as a stationary process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here the explicit computation of the update \(\Omega _{\nu -1}^{\dag }\hat{Y }_{[t+1,T]}\) can be avoided using instead a “shift-invariance” argument on the estimated observability matrix, see Sect. 13.3.

  2. 2.

    “Complementary”, since it is the orthogonal complement of U [t, T] in the data space \(Z_{[t_{0},t)} \vee U_{[t,T]}\). The notation \(U_{[t,T]}^{\perp }\) is not completely consistent since the ambient space of the complement varies with t.

  3. 3.

    Recall that strict stability of the predictor is always required for prediction error methods [212].

  4. 4.

    Here the system order n is also assumed to be known. Of course any consistent order estimation procedure used in subspace identification would serve to the purpose. Order estimation is performed in most subspace identification algorithms by a (weighted) SVD truncation step which was discuss in the previous subsection.

Bibliography

  1. Anderson, B.D.O., Gevers, M.R.: Identifiability of linear stochastic systems operating under linear feedback. Automatica 18(2), 195–213 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bauer, D.: Asymptotic properties of subspace estimators. Automatica 41, 359–376 (2005)

    Article  MATH  Google Scholar 

  3. Caines, P.E., Chan, C.: Feedback between stationary stochastic processes. IEEE Trans. Autom. Control 20(4), 498–508 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caines, P.E., Chan, C.W.: Estimation, identification and feedback. In: Mehra, R., Lainiotis, D. (eds.) System Identification: Advances and Case Studies, pp. 349–405. Academic, New York (1976)

    Chapter  Google Scholar 

  5. Chiuso, A.: On the relation between cca and predictor-based subspace identification. IEEE Trans. Autom. Control 52(10), 1795–1812 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chiuso, A., Picci, G.: Probing inputs for subspace identification (invited paper). In: Proceedings of the 2000 Conference on Decision and Control, pages paper CDC00–INV0201, Sydney, Dec 2000

    Google Scholar 

  7. Chiuso, A., Picci, G.: Geometry of oblique splitting, minimality and Hankel operators. In: Rantzer, A., Byrnes, C. (eds.) Directions in Mathematical Systems Theory and Optimization. Number 286 in Lecture Notes in Control and Information Sciences, pp. 85–124. Springer, New York (2002)

    Google Scholar 

  8. Chiuso, A., Picci, G.: The asymptotic variance of subspace estimates. J. Econom. 118(1–2), 257–291 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chiuso, A., Picci, G.: Asymptotic variance of subspace methods by data orthogonalization and model decoupling: a comparative analysis. Automatica 40(10), 1705–1717 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chiuso, A., Picci, G.: On the ill-conditioning of subspace identification with inputs. Automatica 40(4), 575–589 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chiuso, A., Picci, G.: Subspace identification by data orthogonalization and model decoupling. Automatica 40(10), 1689–1703 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chiuso, A., Picci, G.: Consistency analysis of some closed-loop subspace identification methods. Autom.: Spec. Issue Syst. Identif. 41, 377–391 (2005)

    Google Scholar 

  13. Chiuso, A., Picci, G.: Constructing the state of random processes with feedback. In: Proceedings of the IFAC International Symposium on System Identification (SYSID-03), Rotterdam, Aug 2003

    Google Scholar 

  14. Gevers, M.R., Anderson, B.D.O.: Representations of jointly stationary stochastic feedback processes. Int. J. Control 33(5), 777–809 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gevers, M.R., Anderson, B.D.O.: On jointly stationary feedback-free stochastic processes. IEEE Trans. Autom. Control 27, 431–436 (1982)

    Article  MATH  Google Scholar 

  16. Granger, C.W.J.: Economic processes involving feedback. Inf. Control 6, 28–48 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jansson, M., Wahlberg, B.: On consistency of subspace methods for system identification. Automatica 34, 1507–1519 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Katayama, T., Kawauchi, H., Picci, G.: Subspace identification of closed loop systems by orthogonal decomposition. Automatica 41, 863–872 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Katayama, T., Picci, G.: Realization of stochastic systems with exogenous inputs and subspace system identification methods. Automatica 35(10), 1635–1652 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Larimore, W.E.: System identification, reduced-order filtering and modeling via canonical variate analysis. In: Proceedings of the American Control Conference, San Francisco, pp. 445–451 (1983)

    Google Scholar 

  21. Ljung, L.: System Identification; Theory for the User, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  22. Picci, G.: Oblique splitting subspaces and stochastic realization with inputs. In: Prätzel-Wolters, D., Helmke, U., Zerz, E. (eds.) Operators, Systems and Linear Algebra, pp. 157–174. Teubner, Stuttgart (1997)

    Chapter  Google Scholar 

  23. Picci, G.: Stochastic realization and system identification. In: Katayama, T., Sugimoto, I. (eds.) Statistical Methods in Control and Signal Processing, pp. 205–240. M. Dekker, New York (1997)

    Google Scholar 

  24. Picci, G., Katayama, T.: Stochastic realization with exogenous inputs and “subspace methods” identification. Signal Process. 52, 145–160 (1996)

    Article  MATH  Google Scholar 

  25. Qin, S.J., Ljung, L.: Closed-loop subspace identification with innovation estimation. In: Proceedings of SYSID 2003, Rotterdam, Aug 2003

    Google Scholar 

  26. van Overschee, P., De Moor, B.: N4SID: subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30, 75–93 (1994)

    Article  MATH  Google Scholar 

  27. Van Overschee, P., De Moor, B.: Choice of state-space basis in combined deterministic-stochastic subspace identification. Automatica 31(12), 1877–1883 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. van Overschee, P., De Moor, B.: Subspace Identification for Linear Systems. Kluwer Academic, Boston (1996)

    Book  MATH  Google Scholar 

  29. Verhaegen, M.: Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 30, 61–74 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindquist, A., Picci, G. (2015). Stochastic Systems with Inputs. In: Linear Stochastic Systems. Series in Contemporary Mathematics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45750-4_17

Download citation

Publish with us

Policies and ethics