Skip to main content

Smoothing and Interpolation

  • Chapter
Linear Stochastic Systems

Part of the book series: Series in Contemporary Mathematics ((SCMA,volume 1))

  • 2464 Accesses

Abstract

Given a linear stochastic system of dimension n in either discrete or continuous time, the smoothing problem amounts to determining the least-squares estimates

$$\displaystyle{\hat{x}(t) =\mathop{ \mathrm{E}}\nolimits \{x(t)\mid y(s);\;t_{0} \leq s \leq t_{1}\},\quad t_{0} \leq t \leq t_{1}}$$

for some finite interval [t 0, t 1]. When t 0 → − and t 1 → , we end up in the stationary setting of Sect. 14.3, and we shall use this fact to reduce the dimension of the smoothing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall Inc., Englewood Cliffs (1979)

    MATH  Google Scholar 

  2. Badawi, F.A., Lindquist, A.: A stochastic realization approach to the discrete-time Mayne-Fraser smoothing formula. In: Frequency Domain and State Space Methods for Linear Systems, Stockholm, 1985, pp. 251–262. North-Holland, Amsterdam (1986)

    Google Scholar 

  3. Badawi, F.A., Lindquist, A., Pavon, M.: On the Mayne-Fraser smoothing formula and stochastic realization theory for nonstationary linear stochastic systems. In: Proceedings of the 18th IEEE Conference on Decision and Control, Fort Lauderdale, 1979, vols. 1, 2, pp. 505–510A. IEEE, New York (1979)

    Google Scholar 

  4. Badawi, F.A., Lindquist, A., Pavon, M.: A stochastic realization approach to the smoothing problem. IEEE Trans. Autom. Control 24(6), 878–888 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brockett, R.W.: Finite Dimensional Linear Systems. Wiley, New York (1970)

    MATH  Google Scholar 

  6. Bryson, A.E., Frazier, M.: Smoothing for linear and nonlinear dynamic systems. In: Proceedings of the Optimum System Synthesis Conference, pp. 353–364. Wright-Patterson AFB, Ohio, USA (1963)

    Google Scholar 

  7. Ferrante, A., Picci, G.: Minimal realization and dynamic properties of optimal smoothers. IEEE Trans. Autom. Control 45(11), 2028–2046 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fraser, D.C.: A new technique for optimal smoothing of data. PhD thesis, MIT, Cambridge (1967)

    Google Scholar 

  9. Fraser, D., Potter, J.: The optimum linear smoother as a combination of two optimum linear filters. IEEE Trans. Autom. Control 14(4), 387–390 (1969)

    Article  MathSciNet  Google Scholar 

  10. Kailath, T., Frost, P.A.: An innovations approach to least-squares estimation – part ii: Linear smoothing in additive noise. IEEE Trans. Autom. Control AC-13, 655–660 (1968)

    Article  MathSciNet  Google Scholar 

  11. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Clarendon, Oxford (1995)

    MATH  Google Scholar 

  12. Lewis, F.L.: Applied Optimal Control & Estimation. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  13. Lindquist, A.: A theorem on duality between estimation and control for linear stochastic systems with time delay. J. Math. Anal. Appl. 37(2), 516–536 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lindquist, A., Picci, G.: Realization theory for multivariate stationary Gaussian processes. SIAM J. Control Optim. 23(6), 809–857 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lindquist, A., Picci, G.: A geometric approach to modelling and estimation of linear stochastic systems. J. Math. Syst. Estim. Control 1(3), 241–333 (1991)

    MathSciNet  Google Scholar 

  16. Ljung, L., Kailath, T.: Backwards Markovian models for second-order stochastic processes (corresp.). IEEE Trans. Inf. Theory 22(4), 488–491 (1976)

    Google Scholar 

  17. Ljung, L., Kailath, T.: A unified approach to smoothing formulas. Automatica 12(2), 147–157 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mayne, D.Q.: A solution of the smoothing problem for linear dynamic systems. Automatica 4, 73–92 (1966)

    Article  MATH  Google Scholar 

  19. Paige, C.C., Saunders, M.A.: Least-squares estimation of discrete linear dynamical systems using orthogonal transformations. SIAM J. Numer. Anal. 14, 180–193 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pavon, M.: A new algorithm for optimal interpolation of discrete-time stationary processes. In: Analysis and Optimization of Systems, Versailles, pp. 699–718. Springer (1982)

    Google Scholar 

  21. Pavon, M.: New results on the interpolation problem for continuous-time stationary increments processes. SIAM J. Control Optim. 22(1), 133–142 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pavon, M.: Optimal interpolation for linear stochastic systems. SIAM J. Control Optim. 22(4), 618–629 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Picci, G., Pinzoni, S.: Acausal models and balanced realizations of stationary processes. Linear Algebra Appl. 205/206, 957–1003 (1994)

    Google Scholar 

  24. Rauch, H.E., Tung, F., Striebel, C.T.: Maximum likelihood estimates of linear dynamic systems. AIAA J. 3, 1445–1450 (1965)

    Article  MathSciNet  Google Scholar 

  25. Sidhu, G.S., Desai, U.B.: New smoothing algorithms based on reversed-time lumped models. IEEE Trans. Autom. Control AC-21, 538–541 (1976)

    Article  MathSciNet  Google Scholar 

  26. Silverman, L.M., Meadows, H.E.: Controllability and observability in time-variable linear systems. SIAM J. Control 5(1), 64–73 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  27. Weinert, H.L., Desai, U.B.: On complementary models and fixed-interval smoothing. IEEE Trans. Autom. Control AC-26, 863–867 (1981)

    Article  Google Scholar 

  28. Zachrisson, L.E.: On optimal smoothing of continuous time Kalman processes. Inf. Sci. 1(2), 143–172 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindquist, A., Picci, G. (2015). Smoothing and Interpolation. In: Linear Stochastic Systems. Series in Contemporary Mathematics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45750-4_15

Download citation

Publish with us

Policies and ethics