Advertisement

Fiber-Shaped Perovskite Solar Cell

  • Huisheng Peng
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

This chapter refers to the recent breakthrough of perovskite solar cell as the pioneer in the next-generation photovoltaics. The working mechanism explains the high performance; various structure including mesoscopic structure, meso-superstructure, and thin-film structure are compared; and extensive materials are carefully and systemically discussed. Then the flexible photovoltaics were demonstrated in detail, evolving to the fiber-shaped perovskite solar cell. Furthermore, the fiber-shaped perovskite solar cell realizes stretchability through delicate structure design. Finally, the perspective for the further development tendency was presented.

Keywords

Solar Cell Power Conversion Efficiency TiO2 Nanotubes Polymer Solar Cell Perovskite Solar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mitzi D, Wang S, Feild C, Chess C, Guloy A (1995) Conducting layered organic-inorganic halides containing<110>-oriented perovskite sheets. Science 267(5203):1473–1476CrossRefGoogle Scholar
  2. 2.
    Kojima A, Teshima K, Miyasaka T, Shirai Y (2006) Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). In: Meeting abstracts, The Electrochemical Society, pp 397–397Google Scholar
  3. 3.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051CrossRefGoogle Scholar
  4. 4.
    Im J-H, Lee C-R, Lee J-W, Park S-W, Park N-G (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093CrossRefGoogle Scholar
  5. 5.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2008) Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (11). In: Meeting abstracts, The Electrochemical Society, pp 27–27Google Scholar
  6. 6.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585CrossRefGoogle Scholar
  7. 7.
    Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591Google Scholar
  8. 8.
    Docampo P, Guldin S, Leijtens T, Noel NK, Steiner U, Snaith HJ (2014) Lessons learned: from dye‐sensitized solar cells to all‐solid‐state hybrid devices. Adv Mater 26(24):4013–4030CrossRefGoogle Scholar
  9. 9.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647CrossRefGoogle Scholar
  10. 10.
    Zhou H, Chen Q, Li G, Luo S, Song T-b, Duan H-S, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546CrossRefGoogle Scholar
  11. 11.
    Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842CrossRefGoogle Scholar
  12. 12.
    Sum TC, Mathews N (2014) Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci 7(8):2518–2534CrossRefGoogle Scholar
  13. 13.
    Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630CrossRefGoogle Scholar
  14. 14.
    Snaith HJ (2010) Estimating the maximum attainable efficiency in dye‐sensitized solar cells. Adv Funct Mater 20(1):13–19CrossRefGoogle Scholar
  15. 15.
    Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398CrossRefGoogle Scholar
  16. 16.
    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y (2014) A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194):295–298CrossRefGoogle Scholar
  17. 17.
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156):341–344CrossRefGoogle Scholar
  18. 18.
    Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7(3):982–988CrossRefGoogle Scholar
  19. 19.
    Hao F, Stoumpos CC, Cao DH, Chang RP, Kanatzidis MG (2014) Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photonics 8(6):489–494CrossRefGoogle Scholar
  20. 20.
    Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A, Sadhanala A, Eperon GE, Pathak SK, Johnston MB (2014) Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci 7(9):3061–3068CrossRefGoogle Scholar
  21. 21.
    Heo JH, Im SH, Noh JH, Mandal TN, Lim C-S, Chang JA, Lee YH, H-j K, Sarkar A, Nazeeruddin MK (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7(6):486–491CrossRefGoogle Scholar
  22. 22.
    Li L-L, Tsai C-Y, Wu H-P, Chen C-C, Diau EW-G (2010) Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells. J Mater Chem 20(14):2753–2758CrossRefGoogle Scholar
  23. 23.
    Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11(1):15–26CrossRefGoogle Scholar
  24. 24.
    Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol Energy Mater Sol Cells 93(4):465–475CrossRefGoogle Scholar
  25. 25.
    Youn H, Lee T, Guo LJ (2014) Multi-film roll transferring (MRT) process using highly conductive and solution-processed silver solution for fully solution-processed polymer solar cells. Energy Environ Sci 7(8):2764–2770CrossRefGoogle Scholar
  26. 26.
    Liao JY, Lei BX, Chen HY, Kuang DB, Su CY (2012) Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy Environ Sci 5(2):5750–5757CrossRefGoogle Scholar
  27. 27.
    Pan S, Yang Z, Chen P, Deng J, Li H, Peng H (2014) Wearable solar cells by stacking textile electrodes. Angew Chem Int Ed 53(24):6110–6114CrossRefGoogle Scholar
  28. 28.
    Fan X, Wang FZ, Chu ZZ, Chen L, Zhang C, Zou DC (2007) Conductive mesh based flexible dye-sensitized solar cells. Appl Phys Lett 90(7):073501CrossRefGoogle Scholar
  29. 29.
    Qiu L, Wu Q, Yang Z, Sun X, Zhang Y, Peng H (2014) Freestanding aligned carbon nanotube array grown on a large-area single-layered graphene sheet for efficient dye-sensitized solar cell. Small. doi: 10.1002/smll.201400703 Google Scholar
  30. 30.
    Jorgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC (2012) Stability of polymer solar cells. Adv Mater 24(5):580–612CrossRefGoogle Scholar
  31. 31.
    Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ (2013) Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun 4:2761–2766CrossRefGoogle Scholar
  32. 32.
    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith HJ (2014) Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ Sci 7(3):1142–1147CrossRefGoogle Scholar
  33. 33.
    Liu DY, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 8(2):133–138CrossRefGoogle Scholar
  34. 34.
    Wang JT, Ball JM, Barea EM, Abate A, Alexander-Webber JA, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith HJ, Nicholas RJ (2014) Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14(2):724–730CrossRefGoogle Scholar
  35. 35.
    Ball JM, Lee MM, Hey A, Snaith HJ (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ Sci 6(6):1739–1743CrossRefGoogle Scholar
  36. 36.
    Kumar MH, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix PP, Mathews N (2013) Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun 49(94):11089–11091CrossRefGoogle Scholar
  37. 37.
    You J, Hong Z, Yang YM, Chen Q, Cai M, Song TB, Chen CC, Lu S, Liu Y, Zhou H, Yang Y (2014) Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8(2):1674–1680CrossRefGoogle Scholar
  38. 38.
    Li Z, Kulkarni SA, Boix PP, Shi E, Cao A, Fu K, Batabyal SK, Zhang J, Xiong Q, Wong LH, Mathews N, Mhaisalkar SG (2014) Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8(7):6797–6804CrossRefGoogle Scholar
  39. 39.
    Roldán-Carmona C, Malinkiewicz O, Soriano A, Mínguez Espallargas G, Garcia A, Reinecke P, Kroyer T, Dar MI, Nazeeruddin MK, Bolink HJ (2014) Flexible high efficiency perovskite solar cells. Energy Environ Sci 7(3):994–997CrossRefGoogle Scholar
  40. 40.
    Qiu L, Deng J, Lu X, Yang Z, Peng H (2014) Integrating perovskite solar cells into a flexible fiber. Angew Chem Int Ed 53(39):10425–10428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Huisheng Peng
    • 1
  1. 1.Department of Macromolecular ScienceFudan UniversityShanghaiChina

Personalised recommendations