Advertisement

Synthesis and Optimization by Quantum Circuit Description Language

Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8911)

Abstract

This paper describes the infrastructure of synthesizing quantum circuits via a quantum description language and for this purpose a new quantum circuit description language named QCDL is introduced which comprises instructions for quantum unitary operations and high-level structures which are synthesized into quantum logic level architecture. Next to introducing this language, we describe our synthesis approach to build up the quantum circuits out of a QCDL program. Although there are some languages like QCDL that work in the same way, but they lack all required instruction set, optimization step and/or support for distributed quantum circuits like the one in QCDL. More importantly, this paper describes a synthesis method for the specified language which is not completely included in other works in the field.

Keywords

Quantum computing Quantum circuit description language HDL-based quantum circuit synthesis Quantum circuit optimization 

References

  1. 1.
    Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Proceedings of the 46th Annual Design Automation Conference, pp. 270–275. ACM (2009)Google Scholar
  2. 2.
    Kerntopf, P.: A new heuristic algorithm for reversible logic synthesis. In: Proceedings of the 41st Annual Design Automation Conference, pp. 834–837. ACM (2004)Google Scholar
  3. 3.
    Takahashi, K., Hirayama, T.: Reversible logic synthesis from positive Davio trees of logic functions. In: TENCON 2009–2009 IEEE Region 10 Conference, pp. 1–4. IEEE (2009)Google Scholar
  4. 4.
    Pang, Y., Wang, S., He, Z., Lin, J., Sultana, S., Radecka, K.: Positive Davio-based synthesis algorithm for reversible logic. In: 2011 IEEE 29th International Conference on Computer Design (ICCD), pp. 212–218. IEEE (2011)Google Scholar
  5. 5.
    Yokoyama, T., Gluck, R.: A reversible programming language and its invertible self-interpreter. In: Symposium on Partial Evaluation and Semanticsbased Program Manipulation, pp. 144–153 (2007)Google Scholar
  6. 6.
    Wille, R., Offermann, S., Drechsler, R.: SyReC: a programming language for synthesis of reversible circuits. In: System Specification and Design Languages, pp. 207–222. Springer, New York (2012)CrossRefGoogle Scholar
  7. 7.
    Chakrabarti, A., Sur-Kolay, S., Mandal, S.B.: Design of a hardware description language based quantum circuit simulator. Int. J. Recent Trends Eng. Technol. 1 (2009)Google Scholar
  8. 8.
    Gawron, P., Klamka, J., Miszczak, J., Winiarczyk, R.: Extending scientific computing system with structural quantum programming capabilities. Bull. Pol. Acad. Sci. Tech. Sci. 58, 77–88 (2010)Google Scholar
  9. 9.
    Ömer, B.: Structured quantum programming. Inf. Syst. 130 (2003)Google Scholar
  10. 10.
    Bettelli, S., Calarco, T., Serafini, L.: Toward an architecture for quantum programming. Eur. Phys. J. D-Anat. Mol. Opt. Plasma Phys. 25, 181–200 (2003)Google Scholar
  11. 11.
    Ying, M., Feng, Y.: A flowchart language for quantum programming. IEEE Trans. Softw. Eng. 37, 466–485 (2011)CrossRefGoogle Scholar
  12. 12.
    Selinger, P.: A brief survey of quantum programming languages. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 1–6. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Liu, X., Kubiatowicz, J.: Chisel-Q: Designing quantum circuits with a scala embedded language. In: 2013 IEEE 31st International Conference on Computer Design (ICCD). IEEE (2013)Google Scholar
  14. 14.
    Green, A.S., Lumsdaine, P.L.F., Ross, N.J., Selinger, P., Valiron, B.: An introduction to quantum programming in quipper. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 110–124. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Green, A.S., Lumsdaine, P. L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. In: ACM SIGPLAN Notices, vol. 48, pp. 333–342. ACM (2013)Google Scholar
  16. 16.
    Abhari, A.J., Faruque, A., Dousti, M.J., Svec, L., Catu, O., Chakrabati, A., Chiang, C.-F., Vanderwilt, S., Black, J., Chong, F.: Scaffold: quantum programming language. Technical Report TR-934-12, Princeton University (2012)Google Scholar
  17. 17.
    McMahon, D.: Quantum Computing Explained. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  18. 18.
    Sgarbas, K.N.: A quantum probability splitter and its application to qubit preparation. Quantum Inf. Process. 12, 601–610 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Maynard, C.M., Einar, P.: Integer Arithmetic With Hybrid Quantum-Classical Circuits (2013). arXiv preprint http://arxiv.org/abs/1304.4069arXiv:1304.4069
  20. 20.
    Florio, G., Picca, D.: Quantum implementation of elementary arithmetic operations (2004). arXiv preprint http://arxiv.org/abs/quant-ph/0403048quant-ph/0403048
  21. 21.
    Choi, B.S., Van Meter, R.: A \(\Theta \) \((\sqrt{n})\)-depth quantum adder on the 2D NTC quantum computer architecture. ACM J. Emerg. Technol. Comput. Syst. (JETC) 8(3), 24:1–24:22 (2012)Google Scholar
  22. 22.
    Draper, T.G.: Addition on a Quantum Computer (2000). arXiv preprint http://arxiv.org/abs/quant-ph/0008033quant-ph/0008033
  23. 23.
    Frank, M.P., Thomas F.K. Jr.: Reversibility for efficient computing. Diss. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science (1999)Google Scholar
  24. 24.
    Oliveira, D.S., Ramos, R.V.: Quantum bit string comparator: circuits and applications. Quantum Comput. Comput. 7, 17–26 (2007)MathSciNetGoogle Scholar
  25. 25.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)zbMATHGoogle Scholar
  26. 26.
    Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead adder. Quantum Inf. Comput. 6, 351–369 (2006)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic-based binary and BCD adder circuits. ACM J. Emerg. Technol. Comput. Syst. 9(3) (2013)Google Scholar
  28. 28.
    Thapliyal, H., Ranganathan, N.: A new reversible design of bcd adder. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–4. IEEE (2011)Google Scholar
  29. 29.
    Thapliyal, H.: Ranganathan. N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. 6(4), 14:1–14:35 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Ferdowsi university of MashhadMashhadIran
  2. 2.Faculty of Electrical and Computer EngineeringShahid Beheshti University, G.C.EvinIran

Personalised recommendations