Skip to main content

Biology of the Basement Membrane Zone

  • Chapter
  • First Online:
Blistering Diseases

Abstract

The dermal-epidermal basement membrane contains specialized components which provide added adhesion to counteract disruptive external forces. These include specialized laminins, collagens, integrins, as well as other unique structural components which together serve to connect the intermediate filament network of the basal keratinocyte cytoskeleton to the interstitial collagen network of the papillary dermis. Damage to the dermal-epidermal basement membrane, whether through inherited genetic mutations or acquired autoimmune disorders, results in disruption of dermal-epidermal cohesion and blistering disease. The dermal-epidermal basement membrane also plays a key role in dynamic processes such as skin development, carcinoma invasion, and wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Timpl R, Dziadek M. Structure, development and molecular pathology of basement membranes. Int Rev Exp Path. 1986;29:1–112.

    CAS  PubMed  Google Scholar 

  2. Leblond CP, Inoue S. Structure, composition and assembly of basement membranes. Am J Anat. 1989;185:367–80.

    CAS  PubMed  Google Scholar 

  3. Keene DR, Marinkovich MP, Sakai LY. Immunodissection of the connective tissue matrix in human skin. Microsc Res Tech. 1997;38(4):394–406.

    CAS  PubMed  Google Scholar 

  4. Hippe-Sanwald S. Impact of freeze substitution on biological electron microscopy. Microsc Res Tech. 1993;24(5):400–22.

    CAS  PubMed  Google Scholar 

  5. Yurchenco PD, Smirnov S, Mathus T. Analysis of basement membrane self-assembly and cellular interactions with native and recombinant glycoproteins. Methods Cell Biol. 2002;69:111–44.

    CAS  PubMed  Google Scholar 

  6. Timpl R, Engel J. Type VI collagen. In: Mayne R, Burgeson RE, editors. Structure and function of collagen types. Orlando: Academic; 1987. p. 105–43.

    Google Scholar 

  7. Kohfeldt E, Sasaki T, Gohring W, Timpl R. Nidogen-2: a new basement membrane protein with diverse binding properties. J Mol Biol. 1998;282(1):99–109.

    CAS  PubMed  Google Scholar 

  8. Miosge N, Kluge JG, Studzinski A, Zelent C, Bode C, Sprysch P, et al. In situ-RT-PCR and immunohistochemistry for the localisation of the mRNA of the alpha 3 chain of laminin and laminin-5 during human organogenesis. Anat Embryol (Berl). 2002;205(5–6):355–63.

    CAS  Google Scholar 

  9. Mayer U, Nischt R, Poschl E, Mann K, Fukuda K, Gerl M, et al. A single EGF-like motif of laminin is responsible for high affinity nidogen binding. Embo J. 1993;12(5):1879–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Takagi J, Yang Y, Liu JH, Wang JH, Springer TA. Complex between nidogen and laminin fragments reveals a paradigmatic beta-propeller interface. Nature. 2003;424(6951):969–74.

    CAS  PubMed  Google Scholar 

  11. Ries A, Gohring W, Fox J, Timpl R, Sasaki T. Recombinant domains of mouse nidogen-1 and their binding to basement membrane proteins and monoclonal antibodies. Eur J Biochem. 2001;268(19):5119–28.

    CAS  PubMed  Google Scholar 

  12. Fleischmajer R, Schechter A, Bruns M, Perlish JS, Macdonald ED, Pan TC, et al. Skin fibroblasts are the only source of nidogen during early basal lamina formation in vitro. J Invest Dermatol. 1995;105(4):597–601.

    CAS  PubMed  Google Scholar 

  13. Marinkovich MP, Keene DR, Rimberg CS, Burgeson RE. Cellular origin of the dermal-epidermal basement membrane. Dev Dyn. 1993;197(4):255–67.

    CAS  PubMed  Google Scholar 

  14. Yurchenco PD, Furthmayr H. Self assembly of basement membrane collagen. Biogeosciences. 1984;23:1839–50.

    CAS  Google Scholar 

  15. Iozzo RV. Perlecan: a gem of a proteoglycan. Matrix Biol. 1994;14(3):203–8.

    CAS  PubMed  Google Scholar 

  16. Iozzo RV. Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol. 2005;6(8):646–56.

    CAS  PubMed  Google Scholar 

  17. Whitelock JM, Melrose J, Iozzo RV. Diverse cell signaling events modulated by perlecan. Biochemistry. 2008;47(43):11174–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Chuang CY, Lord MS, Melrose J, Rees MD, Knox SM, Freeman C, et al. Heparan sulfate-dependent signaling of fibroblast growth factor 18 by chondrocyte-derived perlecan. Biochemistry. 2010;49(26):5524–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Zoeller JJ, Whitelock JM, Iozzo RV. Perlecan regulates developmental angiogenesis by modulating the VEGF-VEGFR2 axis. Matrix Biol. 2009;28(5):284–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Zoeller JJ, McQuillan A, Whitelock J, Ho SY, Iozzo RV. A central function for perlecan in skeletal muscle and cardiovascular development. J Cell Biol. 2008;181(2):381–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Bix G, Iozzo RV. Novel interactions of perlecan: unraveling perlecan’s role in angiogenesis. Microsc Res Tech. 2008;71(5):339–48.

    CAS  PubMed  Google Scholar 

  22. Miner JH. Laminins and their roles in mammals. Microsc Res Tech. 2008;71(5):349–56.

    CAS  PubMed  Google Scholar 

  23. Durbeej M. Laminins. Cell Tissue Res. 2010;339(1):259–68.

    CAS  PubMed  Google Scholar 

  24. Tzu J, Marinkovich MP. Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol. 2008;40(2):199–214.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Pouliot N, Saunders NA, Kaur P. Laminin 10/11: an alternative adhesive ligand for epidermal keratinocytes with a functional role in promoting proliferation and migration. Exp Dermatol. 2002;11(5):387–97.

    CAS  PubMed  Google Scholar 

  26. Makino M, Okazaki I, Kasai S, Nishi N, Bougaeva M, Weeks BS, et al. Identification of cell binding sites in the laminin alpha5-chain G domain. Exp Cell Res. 2002;277(1):95–106.

    CAS  PubMed  Google Scholar 

  27. Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, et al. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1–5, identification of heterotrimeric laminins 8–11, and cloning of a novel alpha3 isoform. J Cell Biol. 1997;137(3):685–701.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Kikkawa Y, Sanzen N, Fujiwara H, Sonnenberg A, Sekiguchi K. Integrin binding specificity of laminin-10/11: laminin-10/11 are recognized by alpha 3 beta 1, alpha 6 beta 1 and alpha 6 beta 4 integrins. J Cell Sci. 2000;113(Pt 5):869–76.

    CAS  PubMed  Google Scholar 

  29. Timpl R, Tisi D, Talts JF, Andac Z, Sasaki T, Hohenester E. Structure and function of laminin LG modules. Matrix Biol. 2000;19(4):309–17.

    CAS  PubMed  Google Scholar 

  30. Li J, Zhang YP, Kirsner RS. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech. 2003;60(1):107–14.

    CAS  PubMed  Google Scholar 

  31. Heida Y, Nishizawa Y, Uematsu J, Owaribe K. Identification of a new major hemidesmosomal protein, HD1: a major high molecular mass component of isolated hemidesmosomes. J Cell Biol. 1992;116:1497–506.

    Google Scholar 

  32. Koster J, Geerts D, Favre B, Borradori L, Sonnenberg A. Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly. J Cell Sci. 2003;116(Pt 2):387–99.

    CAS  PubMed  Google Scholar 

  33. Litjens SH, Wilhelmsen K, de Pereda JM, Perrakis A, Sonnenberg A. Modeling and experimental validation of the binary complex of the plectin actin-binding domain and the first pair of fibronectin type III (FNIII) domains of the {beta}4 integrin. J Biol Chem. 2005;280(23):22270–7.

    CAS  PubMed  Google Scholar 

  34. Koster J, van Wilpe S, Kuikman I, Litjens SH, Sonnenberg A. Role of binding of plectin to the integrin beta4 subunit in the assembly of hemidesmosomes. Mol Biol Cell. 2004;15(3):1211–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Litjens S, de Pereda J, Sonnenberg A. Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol. 2006;16:376–83.

    CAS  PubMed  Google Scholar 

  36. de Pereda JM, Lillo MP, Sonnenberg A. Structural basis of the interaction between integrin alpha6beta4 and plectin at the hemidesmosomes. EMBO J. 2009;28:1180–90.

    PubMed Central  PubMed  Google Scholar 

  37. Smith FJ, Eady RA, Leigh IM, McMillan JR, Rugg EL, Kelsell DP, et al. Plectin deficiency results in muscular dystrophy with epidermolysis bullosa. Nat Genet. 1996;13(4):450–7.

    CAS  PubMed  Google Scholar 

  38. Gache Y, Ohavana SS, Lacour JP, Witche G, Owaribe K, Meneguzzi G, et al. Defective expression of plectin/HD1 in epidermolysis bullosa simplex with muscular dystrophy. J Clin Invest. 1996;97(10):2289–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. McLean WH, Pulkkinen L, Smith FJ, Rugg EL, Lane EB, Bullrich F, et al. Loss of plectin causes epidermolysis bullosa with muscular dystrophy: cDNA cloning and genomic organization. Genes Dev. 1996;10(14):1724–35.

    CAS  PubMed  Google Scholar 

  40. Chavanas S, Pulkkinen L, Gache Y, Smith FJ, McLean WH, Uitto J, et al. A homozygous nonsense mutation in the PLEC1 gene in patients with epidermolysis bullosa simplex with muscular dystrophy. J Clin Invest. 1996;98(10):2196–200.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Kunz M, Rouan F, Pulkkinen L, Hamm H, Jeschke R, Bruckner-Tuderman L, et al. Mutation reports: epidermolysis bullosa simplex associated with severe mucous membrane involvement and novel mutations in the plectin gene. J Invest Dermatol. 2000;114(2):376–80.

    CAS  PubMed  Google Scholar 

  42. Proby CM, Ota T, Suzuki H, Koyasu S, Gamou S, Shimizu N, et al. Development of chimeric molecules for recognition and targeting of antigen-specific B cells in pemphigus vulgaris. Br J Dermatol. 2000;142(2):321–30 [In Process Citation].

    CAS  PubMed  Google Scholar 

  43. Leung CL, Zheng M, Prater SM, Liem RK. The BPAG1 locus: alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J Cell Biol. 2001;154(4):691–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Tang HY, Chaffotte AF, Thacher SM. Structural analysis of the predicted coiled-coil rod domain of the cytoplasmic bullous pemphigoid antigen (BPAG1). Empirical localization of the N-terminal globular domain-rod boundary. J Biol Chem. 1996;271(16):9716–22.

    CAS  PubMed  Google Scholar 

  45. Tamai K, Silos SA, Li K, Korkeela E, Ishikawa H, Uitto J. Tissue-specific expression of the 230-kDa bullous pemphigoid antigen gene (BPAG1). Identification of a novel keratinocyte regulatory cis-element KRE3. J Biol Chem. 1995;270(13):7609–14.

    CAS  PubMed  Google Scholar 

  46. Sawamura DK, Li K, Chu M-L, Uitto J. Human bullous pemphigoid antigen (BPAG1): amino acid sequence deduced from cloned cDNAs predicts biologically important peptide segments and protein domains. J Biol Chem. 1991;266:17784–90.

    CAS  PubMed  Google Scholar 

  47. Favre B, Fontao L, Koster J, Shafaatian R, Jaunin F, Saurat JH, et al. The hemidesmosomal protein bullous pemphigoid antigen 1 and the integrin beta 4 subunit bind to ERBIN. Molecular cloning of multiple alternative splice variants of ERBIN and analysis of their tissue expression. J Biol Chem. 2001;276(35):32427–36.

    CAS  PubMed  Google Scholar 

  48. Germain EC, Santos TM, Rabinovitz I. Phosphorylation of a novel site on the {beta}4 integrin at the trailing edge of migrating cells promotes hemidesmosome disassembly. Mol Biol Cell. 2009;20(1):56–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Iwata Y, Komura K, Kodera M, Usuda T, Yokoyama Y, Hara T, et al. Correlation of IgE autoantibody to BP180 with a severe form of bullous pemphigoid. Arch Dermatol. 2008;144(1):41–8.

    CAS  PubMed  Google Scholar 

  50. Olivry T, Chan LS, Xu L, Chace P, Dunston SM, Fahey M, et al. Novel feline autoimmune blistering disease resembling bullous pemphigoid in humans: IgG autoantibodies target the NC16A ectodomain of type XVII collagen (BP180/BPAG2). Vet Pathol. 1999;36(4):328–35.

    CAS  PubMed  Google Scholar 

  51. Preisz K, Karpati S. Paraneoplastic pemphigus. Orv Hetil. 2007;148(21):979–83.

    PubMed  Google Scholar 

  52. Groves RW, Liu L, Dopping-Hepenstal PJ, Markus HS, Lovell PA, Ozoemena L, et al. A homozygous nonsense mutation within the dystonin gene coding for the coiled-coil domain of the epithelial isoform of BPAG1 underlies a new subtype of autosomal recessive epidermolysis bullosa simplex. J Invest Dermatol. 2010;130:1551–7.

    CAS  PubMed  Google Scholar 

  53. Giudice GJ, Emery DJ, Diaz LA. Cloning and primary structural analysis of the bullous pemphigoid autoantigen BP180. J Invest Dermatol. 1992;99(3):243–50.

    CAS  PubMed  Google Scholar 

  54. Gatalica B, Pulkkinen L, Li KH, Kuokkanen K, Ryynänen M, McGrath JA, et al. Cloning of the human type XVII collagen gene (COL17A1), and detection of novel mutations in generalized atrophic benign epidermolysis bullosa. Am J Hum Genet. 1997;60(2):352–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Franzke CW, Tasanen K, Borradori L, Huotari V, Bruckner-Tuderman L. Shedding of collagen XVII/BP180: structural motifs influence cleavage from cell surface. J Biol Chem. 2004;279(23):24521–9.

    CAS  PubMed  Google Scholar 

  56. Franzke CW, Tasanen K, Schacke H, Zhou Z, Tryggvason K, Mauch C, et al. Transmembrane collagen XVII, an epithelial adhesion protein, is shed from the cell surface by ADAMs. EMBO J. 2002;21(19):5026–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Liu Z, Diaz LA, Swartz SJ, Troy JL, Fairley JA, Giudice GJ. Molecular mapping of a pathogenically relevant BP180 epitope associated with experimentally induced murine bullous pemphigoid. J Immunol. 1995;155(11):5449–54.

    CAS  PubMed  Google Scholar 

  58. Balding SD, Prost C, Diaz LA, Bernard P, Bedane C, Aberdam D, et al. Cicatricial pemphigoid autoantibodies react with multiple sites on the BP180 extracellular domain. J Invest Dermatol. 1996;106(1):141–6.

    CAS  PubMed  Google Scholar 

  59. Hirako Y, Usukura J, Nishizawa Y, Owaribe K. Demonstration of the molecular shape of BP180, a 180-kDa bullous pemphigoid antigen and its potential for trimer formation. J Biol Chem. 1996;271(23):13739–45.

    CAS  PubMed  Google Scholar 

  60. Schumann H, Baetge J, Tasanen K, Wojnarowska F, Schacke H, Zillikens D, et al. The shed ectodomain of collagen XVII/BP180 is targeted by autoantibodies in different blistering skin diseases. Am J Pathol. 2000;156(2):685–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Borradori L, Chavanas S, Schaapveld RQ, Gagnoux-Palacios L, Calafat J, Meneguzzi G, et al. Role of the bullous pemphigoid antigen 180 (BP180) in the assembly of hemidesmosomes and cell adhesion—reexpression of BP180 in generalized atrophic benign epidermolysis bullosa keratinocytes. Exp Cell Res. 1998;239(2):463–76.

    CAS  PubMed  Google Scholar 

  62. Tasanen K, Tunggal L, Chometon G, Bruckner-Tuderman L, Aumailley M. Keratinocytes from patients lacking collagen XVII display a migratory phenotype. Am J Pathol. 2004;164(6):2027–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Jonkman MF, de Jong MC, Heeres K, Steijlen PM, Owaribe K, Kuster W, et al. Generalized atrophic benign epidermolysis bullosa. Either 180-kd bullous pemphigoid antigen or laminin-5 deficiency. Arch Dermatol. 1996;132(2):145–50.

    CAS  PubMed  Google Scholar 

  64. Hintner H, Wolff K. Generalized atrophic benign epidermolysis bullosa. Arch Dermatol. 1982;118(6):375–84.

    CAS  PubMed  Google Scholar 

  65. Hashimoto I, Schnyder UW, Anton-Lamprecht I. Epidermolysis bullosa hereditaria with junctional blistering in an adult. Dermatologica. 1976;152(2):72–86.

    CAS  PubMed  Google Scholar 

  66. Seitz CS, Giudice GJ, Balding SD, Marinkovich MP, Khavari PA. BP180 gene delivery in junctional epidermolysis bullosa. Gene Ther. 1999;6(1):42–7.

    CAS  PubMed  Google Scholar 

  67. Sonnenberg A, Calafat J, Janssen H, Daams H, van der Raaij-Helmer LM, Falcioni R, et al. Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol. 1991;113(4):907–17.

    CAS  PubMed  Google Scholar 

  68. Carter WG, Kaur P, Gil SG, Gahr PJ, Wayner EA. Distinct functions for integrins alpha 3 beta 1 in focal adhesions and alpha 6 beta 4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes. J Cell Biol. 1990;111(6 Pt 2):3141–54.

    CAS  PubMed  Google Scholar 

  69. Geuijen CA, Sonnenberg A. Dynamics of the alpha6beta4 Integrin in keratinocytes. Mol Biol Cell. 2002;13(11):3845–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Sehgal BU, DeBiase PJ, Matzno S, Chew TL, Claiborne JN, Hopkinson SB, et al. Integrin beta4 regulates migratory behavior of keratinocytes by determining laminin-332 organization. J Biol Chem. 2006;281(46):35487–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Nikolopoulos SN, Blaikie P, Yoshioka T, Guo W, Puri C, Tacchetti C, et al. Targeted deletion of the integrin beta4 signaling domain suppresses laminin-5-dependent nuclear entry of mitogen-activated protein kinases and NF-kappaB, causing defects in epidermal growth and migration. Mol Cell Biol. 2005;25(14):6090–102.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Pullar CE, Baier BS, Kariya Y, Russell AJ, Horst BA, Marinkovich MP, et al. beta4 integrin and epidermal growth factor coordinately regulate electric field-mediated directional migration via Rac1. Mol Biol Cell. 2006;17(11):4925–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Borradori L, Koch PJ, Niessen CM, Erkeland S, van Leusden MR, Sonnenberg A. The localization of bullous pemphigoid antigen 180 (BP180) in hemidesmosomes is mediated by its cytoplasmic domain and seems to be regulated by the beta4 integrin subunit. J Cell Biol. 1997;136(6):1333–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Schaapveld RQ, Borradori L, Geerts D, van Leusden MR, Kuikman I, Nievers MG, et al. Hemidesmosome formation is initiated by the beta4 integrin subunit, requires complex formation of beta4 and HD1/plectin, and involves a direct interaction between beta4 and the bullous pemphigoid antigen 180. J Cell Biol. 1998;142(1):271–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Dowling J, Yu QC, Fuchs E. Beta4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J Cell Biol. 1996;134(2):559–72.

    CAS  PubMed  Google Scholar 

  76. Smith LT. Ultrastructural findings in epidermolysis bullosa. Arch Dermatol. 1993;129(12):1578–84.

    CAS  PubMed  Google Scholar 

  77. Pfendner E, Uitto J. Plectin gene mutations can cause epidermolysis bullosa with pyloric atresia. J Invest Dermatol. 2005;124(1):111–5.

    CAS  PubMed  Google Scholar 

  78. D’Alessio M, Zambruno G, Charlesworth A, Lacour JP, Meneguzzi G. Immunofluorescence analysis of villous trophoblasts: a tool for prenatal diagnosis of inherited epidermolysis bullosa with pyloric atresia. J Invest Dermatol. 2008;128:2815–9.

    PubMed  Google Scholar 

  79. Ashton GH, Sorelli P, Mellerio JE, Keane FM, Eady RA, McGrath JA. alpha6beta4 integrin abnormalities in junctional epidermolysis bullosa with pyloric atresia. Br J Dermatol. 2001;144(2):408–14.

    CAS  PubMed  Google Scholar 

  80. Baker SE, Hopkinson SB, Fitchmun M, Andreason GL, Frasier F, Plopper G, et al. Laminin-5 and hemidesmosomes: role of the alpha3 chain subunit in hemidesmosome stability and assembly. J Cell Sci. 1996;109(10):2509–20.

    CAS  PubMed  Google Scholar 

  81. Rousselle P, Keene DR, Ruggiero F, Champliaud MF, Rest M, Burgeson RE. Laminin 5 binds the NC-1 domain of type VII collagen. J Cell Biol. 1997;138(3):719–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Marinkovich MP, Lunstrum GP, Keene DR, Burgeson RE. The dermal-epidermal junction of human skin contains a novel laminin variant. J Cell Biol. 1992;119(3):695–703.

    CAS  PubMed  Google Scholar 

  83. Veitch DP, Nokelainen P, McGowan KA, Nguyen TT, Nguyen NE, Stephenson R, et al. Mammalian tolloid metalloproteinase, and not matrix metalloprotease 2 or membrane type 1 metalloprotease, processes laminin-5 in keratinocytes and skin. J Biol Chem. 2003;278(18):15661–8.

    CAS  PubMed  Google Scholar 

  84. Amano S, Scott IC, Takahara K, Koch M, Champliaud MF, Gerecke DR, et al. Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain. J Biol Chem. 2000;275(30):22728–35.

    CAS  PubMed  Google Scholar 

  85. Goldfinger LE, Stack MS, Jones JC. Processing of laminin-5 and its functional consequences: role of plasmin and tissue-type plasminogen activator. J Cell Biol. 1998;141(1):255–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997;277(5323):225–8.

    CAS  PubMed  Google Scholar 

  87. Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer. 2007;7(5):370–80.

    CAS  PubMed  Google Scholar 

  88. Tran M, Rousselle P, Nokelainen P, Tallapragada S, Nguyen NT, Fincher EF, et al. Targeting a tumor-specific laminin domain critical for human carcinogenesis. Cancer Res. 2008;68(8):2885–94.

    CAS  PubMed  Google Scholar 

  89. Sigle RO, Gil SG, Bhattacharya M, Ryan MC, Yang TM, Brown TA, et al. Globular domains 4/5 of the laminin alpha3 chain mediate deposition of precursor laminin 5. J Cell Sci. 2004;117(Pt 19):4481–94.

    CAS  PubMed  Google Scholar 

  90. Tang J, Wu YM, Zhao P, Jiang JL, Chen ZN. {beta}ig-h3 Interacts with {alpha}3{beta}1 integrin to promote adhesion and migration of human hepatoma cells. Exp Biol Med (Maywood). 2009;234(1):35–9.

    CAS  Google Scholar 

  91. Chen M, Marinkovich M, Veis A, Cai X, Rao C, O’Toole E, et al. Interactions of the amino-terminal noncollagenous (NC1) domain of type VII collagen with extracellular matrix components. A potential role in epidermal-dermal adherence in human skin. J Biol Chem. 1997;272(23):14516–22.

    CAS  PubMed  Google Scholar 

  92. Waterman EA, Sakai N, Nguyen NT, Horst BA, Veitch DP, Dey CN, et al. A laminin-collagen complex drives human epidermal carcinogenesis through phosphoinositol-3-kinase activation. Cancer Res. 2007;67(9):4264–70.

    CAS  PubMed  Google Scholar 

  93. Kivirikko S, McGrath JA, Baudoin C, Aberdam D, Ciatti S, Dunnill MG, et al. A homozygous nonsense mutation in the alpha 3 chain gene of laminin 5 (LAMA3) in lethal (Herlitz) junctional epidermolysis bullosa. Hum Mol Genet. 1995;4(5):959–62.

    CAS  PubMed  Google Scholar 

  94. Pulkkinen L, Christiano AM, Gerecke D, Wagman DW, Burgeson RE, Pittelkow MR, et al. A homozygous nonsense mutation in the beta 3 chain gene of laminin 5 (LAMB3) in Herlitz junctional epidermolysis bullosa. Genomics. 1994;24(2):357–60.

    CAS  PubMed  Google Scholar 

  95. Aberdam D, Galliano MF, Vailly J, Pulkkinen L, Bonifas J, Christiano AM, et al. Herlitz’s junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the g2 subunit of nicein/kalinin (LAMININ-5). Nat Genet. 1994;6(3):299–304.

    CAS  PubMed  Google Scholar 

  96. Marinkovich MP, Verrando P, Keene DR, Meneguzzi G, Lunstrum GP, Ortonne JP, et al. Basement membrane proteins kalinin and nicein are structurally and immunologically identical. Lab Invest. 1993;69(3):295–9.

    CAS  PubMed  Google Scholar 

  97. Meneguzzi G, Marinkovich MP, Aberdam D, Pisani A, Burgeson R, Ortonne JP. Kalinin is abnormally expressed in epithelial basement membranes of Herlitz’s junctional epidermolysis bullosa patients. Exp Dermatol. 1992;1(5):221–9.

    CAS  PubMed  Google Scholar 

  98. Spirito F, Capt A, Del Rio M, Larcher F, Guaguere E, Danos O, et al. Sustained phenotypic reversion of junctional epidermolysis bullosa dog keratinocytes: establishment of an immunocompetent animal model for cutaneous gene therapy. Biochem Biophys Res Commun. 2006;339(3):769–78.

    CAS  PubMed  Google Scholar 

  99. Mellerio JE, Eady RA, Atherton DJ, Lake BD, McGrath JA. E210K mutation in the gene encoding the beta3 chain of laminin-5 (LAMB3) is predictive of a phenotype of generalized atrophic benign epidermolysis bullosa. Br J Dermatol. 1998;139(2):325–31.

    CAS  PubMed  Google Scholar 

  100. McGrath JA, Pulkkinen L, Christiano AM, et al. Altered laminin 5 expression due to mutations in the gene encoding the B3 chain in generalized atrophic benign epidermolysis bullosa. J Invest Dermatol. 1995;104:467–74.

    CAS  PubMed  Google Scholar 

  101. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006;12(12):1397–402.

    CAS  PubMed  Google Scholar 

  102. McLean WH, Irvine AD, Hamill KJ, Whittock NV, Coleman-Campbell CM, Mellerio JE, et al. An unusual N-terminal deletion of the laminin alpha3a isoform leads to the chronic granulation tissue disorder laryngo-onycho-cutaneous syndrome. Hum Mol Genet. 2003;12(18):2395–409.

    CAS  PubMed  Google Scholar 

  103. Champliaud MF, Lunstrum GP, Rousselle P, Nishiyama T, Keene DR, Burgeson RE. Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J Cell Biol. 1996;132(6):1189–98.

    CAS  PubMed  Google Scholar 

  104. Jones JC, Lane K, Hopkinson SB, Lecuona E, Geiger RC, Dean DA, et al. Laminin-6 assembles into multimolecular fibrillar complexes with perlecan and participates in mechanical-signal transduction via a dystroglycan-dependent, integrin-independent mechanism. J Cell Sci. 2005;118(Pt 12):2557–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Keene DR, Sakai LY, Lunstrum GP, Morris NP, Burgeson RE. Type VII collagen forms an extended network of anchoring fibrils. J Cell Biol. 1987;104(3):611–21.

    CAS  PubMed  Google Scholar 

  106. Bachinger HP, Morris NP, Lunstrum GP, Keene DR, Rosenbaum LM, Compton LA, et al. The relationship of the biophysical and biochemical characteristics of type VII collagen to the function of anchoring fibrils. J Biol Chem. 1990;265(17):10095–101.

    CAS  PubMed  Google Scholar 

  107. Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, et al. Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev. 2003;55(12):1547–67.

    CAS  PubMed  Google Scholar 

  108. Burgeson RE, Morris NP, Murray LW, Duncan KG, Keene DR, Sakai LY. The structure of type VII collagen. Ann N Y Acad Sci. 1985;460:47–57.

    CAS  PubMed  Google Scholar 

  109. Rattenholl A, Pappano WN, Koch M, Keene DR, Kadler KE, Sasaki T, et al. Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen. J Biol Chem. 2002;277(29):26372–8.

    CAS  PubMed  Google Scholar 

  110. Sakai LY, Keene DR, Morris NP, Burgeson RE. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol. 1986;103(4):1577–86.

    CAS  PubMed  Google Scholar 

  111. Lunstrum GP, Sakai LY, Keene DR, Morris NP, Burgeson RE. Large complex globular domains of type VII procollagen contribute to the structure of anchoring fibrils. J Biol Chem. 1986;261:9042–8.

    CAS  PubMed  Google Scholar 

  112. Ortiz-Urda S, Garcia J, Green CL, Chen L, Lin Q, Veitch DP, et al. Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science. 2005;307(5716):1773–6.

    CAS  PubMed  Google Scholar 

  113. Villone D, Fritsch A, Koch M, Bruckner-Tuderman L, Hansen U, Bruckner P. Supramolecular interactions in the dermo-epidermal junction zone: anchoring fibril-collagen VII tightly binds to banded collagen fibrils. J Biol Chem. 2008;283(36):24506–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Burgeson RE, Lundstrum GP, Rokosova B. The structure and function of type VII collagen. Ann N Y Acad Sci. 1990;580:32–43.

    CAS  PubMed  Google Scholar 

  115. Christiano AM, Ryynanen M, Uitto J. Dominant dystrophic epidermolysis bullosa: identification of a Gly—> Ser substitution in the triple-helical domain of type VII collagen. Proc Natl Acad Sci U S A. 1994;91(9):3549–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Hilal L, Rochat A, Duquesnoy P, Blanchet-Bardon C, Wechsler J, Martin N, et al. A homozygous insertion-deletion in the type VII collagen gene (COL7A1) in Hallopeau-Siemens dystrophic epidermolysis bullosa. Nat Genet. 1993;5(3):287–93.

    CAS  PubMed  Google Scholar 

  117. Christiano AM, Greenspan DS, Hoffman GG, Zhang X, Tamai Y, Lin AN, et al. A missense mutation in type VII collagen in two affected siblings with recessive dystrophic epidermolysis bullosa. Nat Genet. 1993;4(1):62–6.

    CAS  PubMed  Google Scholar 

  118. Uitto J, McGrath JA, Rodeck U, Bruckner-Tuderman L, Robinson EC. Progress in epidermolysis bullosa research: toward treatment and cure. J Invest Dermatol. 2010;130(7):1778–84.

    CAS  PubMed  Google Scholar 

  119. Remington J, Wang X, Hou Y, Zhou H, Burnett J, Muirhead T, et al. Injection of recombinant human type VII collagen corrects the disease phenotype in a murine model of dystrophic epidermolysis bullosa. Mol Ther. 2009;17(1):26–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Woodley DT, Keene DR, Atha T, Huang Y, Lipman K, Li W, et al. Injection of recombinant human type VII collagen restores collagen function in dystrophic epidermolysis bullosa. Nat Med. 2004;10(7):693–5.

    CAS  PubMed  Google Scholar 

  121. Woodley DT, Keene DR, Atha T, Huang Y, Ram R, Kasahara N, et al. Intradermal injection of lentiviral vectors corrects regenerated human dystrophic epidermolysis bullosa skin tissue in vivo. Mol Ther. 2004;10(2):318–26.

    CAS  PubMed  Google Scholar 

  122. Chen M, Kasahara N, Keene DR, Chan L, Hoeffler WK, Finlay D, et al. Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet. 2002;32(4):670–5.

    CAS  PubMed  Google Scholar 

  123. Ortiz-Urda S, Thyagarajan B, Keene DR, Lin Q, Fang M, Calos MP, et al. Stable nonviral genetic correction of inherited human skin disease. Nat Med. 2002;8(10):1166–70.

    CAS  PubMed  Google Scholar 

  124. Ortiz-Urda S, Lin Q, Green CL, Keene DR, Marinkovich MP, Khavari PA. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest. 2003;111(2):251–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. McGrath JA, Mellerio JE. Epidermolysis bullosa. Br J Hosp Med (Lond). 2006;67(4):188–91.

    Google Scholar 

  126. Brucker-Tuderman L, Mitsuhashi Y, Schnyder U. Anchoring fibrils and type VII collagen are absent from skin in severe recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 1989;93:3–9.

    Google Scholar 

  127. Tidman MJ, Eady RAJ. Evaluation of anchoring fibrils and other components of the dermal-epidermal junction in dystrophic epidermolysis bullosa by a quantitative ultrastructural technique. J Invest Dermatol. 1985;84:374–7.

    CAS  PubMed  Google Scholar 

  128. Woodley DT, Burgeson RE, Lunstrum G, Bruckner-Tuderman L, Reese MJ, Briggaman RA. Epidermolysis bullosa acquisita antigen is the globular carboxyl terminus of type VII procollagen. J Clin Invest. 1988;81(3):683–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Bader B, Smyth N, Nedbal S, Miosge N, Baranowsky A, Mokkapati S, et al. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol Cell Biol. 2005;25(15):6846–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Wewer UM, Engvall E. Merosin/laminin-2 and muscular dystrophy. Neuromuscul Disord. 1996;6(6):409–18.

    CAS  PubMed  Google Scholar 

  131. Miner JH, Cunningham J, Sanes JR. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol. 1998;143(6):1713–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Miner JH, Li C. Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol. 2000;217(2):278–89.

    CAS  PubMed  Google Scholar 

  133. Gao J, DeRouen MC, Chen CH, Nguyen M, Nguyen NT, Ido H, et al. Laminin-511 is an epithelial message promoting dermal papilla development and function during early hair morphogenesis. Genes Dev. 2008;22(15):2111–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Li J, Tzu J, Chen Y, Zhang YP, Nguyen NT, Gao J, et al. Laminin-10 is crucial for hair morphogenesis. EMBO J. 2003;22(10):2400–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Brakebusch C, Grose R, Quondamatteo F, Ramirez A, Jorcano JL, Pirro A, et al. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J. 2000;19(15):3990–4003.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Raghavan S, Bauer C, Mundschau G, Li Q, Fuchs E. Conditional ablation of beta1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J Cell Biol. 2000;150(5):1149–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. DiPersio CM, Hodivala-Dilke KM, Jaenisch R, Kreidberg JA, Hynes RO. alpha3beta1 Integrin is required for normal development of the epidermal basement membrane. J Cell Biol. 1997;137(3):729–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Conti FJ, Rudling RJ, Robson A, Hodivala-Dilke KM. alpha3beta1-integrin regulates hair follicle but not interfollicular morphogenesis in adult epidermis. J Cell Sci. 2003;116(Pt 13):2737–47.

    CAS  PubMed  Google Scholar 

  139. Saus J, Wieslander J, Langeveld JPM, Quinones S, Hudson BG. Identification of Goodpasture antigen as the -3(IV) chain of collagen IV. J Biol Chem. 1988;263:13374–80.

    CAS  PubMed  Google Scholar 

  140. Mizushima H, Hirosaki T, Miyata S, Takamura H, Miyagi Y, Miyazaki K. Expression of laminin-5 enhances tumorigenicity of human fibrosarcoma cells in nude mice. Jpn J Cancer Res. 2002;93(6):652–9.

    CAS  PubMed  Google Scholar 

  141. Mizushima H, Miyagi Y, Kikkawa Y, Yamanaka N, Yasumitsu H, Misugi K, et al. Differential expression of laminin-5/ladsin subunits in human tissues and cancer cell lines and their induction by tumor promoter and growth factors. J Biochem (Tokyo). 1996;120(6):1196–202.

    CAS  Google Scholar 

  142. Turck N, Gross I, Gendry P, Stutzmann J, Freund JN, Kedinger M, et al. Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells. Exp Cell Res. 2005;303(2):494–503.

    CAS  PubMed  Google Scholar 

  143. Katayama M, Sanzen N, Funakoshi A, Sekiguchi K. Laminin gamma2-chain fragment in the circulation: a prognostic indicator of epithelial tumor invasion. Cancer Res. 2003;63(1):222–9.

    CAS  PubMed  Google Scholar 

  144. Souza LF, Souza VF, Silva LD, Santos JN, Reis SR. Expression of basement membrane laminin in oral squamous cell carcinomas. Rev Bras Otorrinolaringol (Engl Ed). 2007;73(6):768–74.

    Google Scholar 

  145. Boulet GA, Schrauwen I, Sahebali S, Horvath C, Depuydt CE, Vereecken A, et al. Correlation between laminin-5 immunohistochemistry and human papillomavirus status in squamous cervical carcinoma. J Clin Pathol. 2007;60(8):896–901.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Yamamoto H, Itoh F, Iku S, Hosokawa M, Imai K. Expression of the gamma(2) chain of laminin-5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Clin Cancer Res. 2001;7(4):896–900.

    CAS  PubMed  Google Scholar 

  147. Kurokawa A, Nagata M, Kitamura N, Noman AA, Ohnishi M, Ohyama T, et al. Diagnostic value of integrin alpha3, beta4, and beta5 gene expression levels for the clinical outcome of tongue squamous cell carcinoma. Cancer. 2008;112:1272–81.

    CAS  PubMed  Google Scholar 

  148. Nordemar S, Kronenwett U, Auer G, Hogmo A, Lindholm J, Edstrom S, et al. Laminin-5 as a predictor of invasiveness in cancer in situ lesions of the larynx. Anticancer Res. 2001;21(1B):509–12.

    CAS  PubMed  Google Scholar 

  149. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature. 2003;421(6923):639–43.

    CAS  PubMed  Google Scholar 

  150. Dutta U, Shaw LM. A key tyrosine (Y1494) in the beta4 integrin regulates multiple signaling pathways important for tumor development and progression. Cancer Res. 2008;68(21):8779–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell. 2006;126(3):489–502.

    CAS  PubMed  Google Scholar 

  152. Nievers MG, Schaapveld RQ, Sonnenberg A. Biology and function of hemidesmosomes. Matrix Biol. 1999;18(1):5–17.

    CAS  PubMed  Google Scholar 

  153. Sterk LM, Geuijen CA, Oomen LC, Calafat J, Janssen H, Sonnenberg A. The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol. 2000;149(4):969–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Behrens DT, Villone D, Koch M, Brunner G, Sorokin L, Robenek H, Bruckner-Tuderman L, Bruckner P, Hansen U. The epidermal basement membrane is a composite of separate laminin or collagen IV- containing networks connected by aggregated perlecan, but not by nidogens. J Biol Chem. 2012;287:18700–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Li L, Fukunaga-Kalabis M, Herlyn M. The three-dimensional human skin reconstruct model: a tool to study normal skin and melanoma progression. J Vis Exp. 2011;(54). doi:10.3791/2937. pii: 2937.

  156. Mokkapati S, Bechtel M, Reibetanz M, Miosge N, Nischt R. Absence of the basement membrane component nidogen 2, but not of nidogen 1, results in increased lung metastasis in mice. J Histochem Cytochem. 2012;60(4):280–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Kuk C, Gunawardana CG, Soosaipillai A, Kobayashi H, Li L, Zheng Y, Diamandis EP. Nidogen-2: a new serum biomarker for ovarian cancer. Clin Biochem. 2010;43(4–5):355–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Cheng ZX, Huang XH, Wang Q, Chen JS, Zhang LJ, Chen XL. Clinical significance of decreased nidogen-2 expression in the tumor tissue and serum of patients with hepatocellular carcinoma. J Surg Oncol. 2012;105(1):71–80.

    CAS  PubMed  Google Scholar 

  159. Mokkapati S, Fleger-Weckmann A, Bechtel M, Koch M, Breitkreutz D, Mayer U, Smyth N, Nischt R. Basement membrane deposition of nidogen 1 but not nidogen 2 requires the nidogen binding module of the laminin gamma1 chain. J Biol Chem. 2011;286(3):1911–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Baranowsky A, Mokkapati S, Bechtel M, Krügel J, Miosge N, Wickenhauser C, Smyth N, Nischt R. Impaired wound healing in mice lacking the basement membrane protein nidogen 1. Matrix Biol. 2010;29(1):15–21.

    CAS  PubMed  Google Scholar 

  161. Nan H, Xu M, Zhang J, Zhang M, Kraft P, Qureshi AA, Chen C, Guo Q, Hu FB, Rimm EB, Curhan G, Song Y, Amos CI, Wang LE, Lee JE, Wei Q, Hunter DJ, Han J. Genome-wide association study identifies nidogen 1 (NID1) as a susceptibility locus to cutaneous nevi and melanoma risk. Hum Mol Genet. 2011;20(13):2673–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, Eisenmenger W. The time-dependent rearrangement of the epithelial basement membrane in human skin wounds—immunohistochemical localization of collagen IV and VII. Int J Legal Med. 1992;105(2):93–7.

    CAS  PubMed  Google Scholar 

  163. Mutasim DF, Diaz LA. The relevance of immunohistochemical techniques in the differentiation of subepidermal bullous diseases. Am J Dermatopathol. 1991;13(1):77–83.

    CAS  PubMed  Google Scholar 

  164. Abreu-Velez AM, Howard MS. Collagen IV in normal skin and in pathological processes. N Am J Med Sci. 2012;4(1):1–8.

    PubMed Central  PubMed  Google Scholar 

  165. Mishra M, Naik VV, Kale AD, Ankola AV, Pilli GS. Perlecan (basement membrane heparan sulfate proteoglycan) and its role in oral malignancies: an overview. Indian J Dent Res. 2011;22(6):823–6.

    PubMed  Google Scholar 

  166. Inomata T, Ebihara N, Funaki T, Matsuda A, Watanabe Y, Ning L, Xu Z, Murakami A, Arikawa-Hirasawa E. Perlecan-deficient mutation impairs corneal epithelial structure. Invest Ophthalmol Vis Sci. 2012;53(3):1277–84.

    CAS  PubMed  Google Scholar 

  167. Bangratz M, Sarrazin N, Devaux J, Zambroni D, Echaniz-Laguna A, René F, Boërio D, Davoine CS, Fontaine B, Feltri ML, Benoit E, Nicole S. A mouse model of schwartz-jampel syndrome reveals myelinating schwann cell dysfunction with persistent axonal depolarization in vitro and distal peripheral nerve hyperexcitability when perlecan is lacking. Am J Pathol. 2012;180(5):2040–55.

    CAS  PubMed  Google Scholar 

  168. Ishijima M, Suzuki N, Hozumi K, Matsunobu T, Kosaki K, Kaneko H, Hassell JR, Arikawa-Hirasawa E, Yamada Y. Perlecan modulates VEGF signaling and is essential for vascularization in endochondral bone formation. Matrix Biol. 2012;31(4):234–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Lee B, Clarke D, Al Ahmad A, Kahle M, Parham C, Auckland L, Shaw C, Fidanboylu M, Orr AW, Ogunshola O, Fertala A, Thomas SA, Bix GJ. Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents. J Clin Invest. 2011;121(8):3005–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Kusuma N, Anderson RL, Pouliot N. Laminin α[alpha]5-derived peptides modulate the properties of metastatic breast tumour cells. Clin Exp Metastasis. 2011;28(8):909–21.

    CAS  PubMed  Google Scholar 

  171. Hongisto H, Vuoristo S, Mikhailova A, Suuronen R, Virtanen I, Otonkoski T, Skottman H. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res. 2012;8(1):97–108.

    CAS  PubMed  Google Scholar 

  172. Kusuma N, Denoyer D, Eble JA, Redvers RP, Parker BS, Pelzer R, Anderson RL, Pouliot N. Integrin-dependent response to laminin-511 regulates breast tumor cell invasion and metastasis. Int J Cancer. 2012;130(3):555–66.

    CAS  PubMed  Google Scholar 

  173. Rodin S, Domogatskaya A, Ström S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. 2010;28(6):611–5.

    CAS  PubMed  Google Scholar 

  174. Katada K, Tomonaga T, Satoh M, Matsushita K, Tonoike Y, Kodera Y, Hanazawa T, Nomura F, Okamoto Y. Plectin promotes migration and invasion of cancer cells and is a novel prognostic marker for head and neck squamous cell carcinoma. J Proteomics. 2012;75(6):1803–15.

    CAS  PubMed  Google Scholar 

  175. McInroy L, Määttä A. Plectin regulates invasiveness of SW480 colon carcinoma cells and is targeted to podosome-like adhesions in an isoform-specific manner. Exp Cell Res. 2011;317(17):2468–78.

    CAS  PubMed  Google Scholar 

  176. Bausch D, Thomas S, Mino-Kenudson M, Fernández-del CC, Bauer TW, Williams M, Warshaw AL, Thayer SP, Kelly KA. Plectin-1 as a novel biomarker for pancreatic cancer. Clin Cancer Res. 2011;17(2):302–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Fania L, Caldarola G, Müller R, Brandt O, Pellicano R, Feliciani C, Hertl M. IgE recognition of bullous pemphigoid (BP)180 and BP230 in BP patients and elderly individuals with pruritic dermatoses. Clin Immunol. 2012;143:236–45.

    CAS  PubMed  Google Scholar 

  178. Le Saché-de Peufeilhoux L, Ingen-Housz-Oro S, Hue S, Sbidian E, Valeyrie-Allanore L, Ortonne N, Roujeau JC, Wolkenstein P, Chosidow O, André C. The value of BP230 enzyme-linked immunosorbent assay in the diagnosis and immunological follow-up of bullous pemphigoid. Dermatology. 2012;224:154–9.

    PubMed  Google Scholar 

  179. Blöcker IM, Dähnrich C, Probst C, Komorowski L, Saschenbrecker S, Schlumberger W, Stöcker W, Zillikens D, Schmidt E. Epitope mapping of BP230 leading to a novel enzyme-linked immunosorbent assay for autoantibodies in bullous pemphigoid. Br J Dermatol. 2012;166(5):964–70.

    PubMed  Google Scholar 

  180. Shimbo T, Tanemura A, Yamazaki T, Tamai K, Katayama I, Kaneda Y. Serum anti-BPAG1 auto-antibody is a novel marker for human melanoma. PLoS One. 2010;5(5):e10566.

    PubMed Central  PubMed  Google Scholar 

  181. Van den Bergh F, Eliason SL, Giudice GJ. Type XVII collagen (BP180) can function as a cell-matrix adhesion molecule via binding to laminin 332. Matrix Biol. 2011;30(2):100–8.

    PubMed Central  PubMed  Google Scholar 

  182. Kusajima E, Akiyama M, Sato M, Natsuga K, Shimizu H. Type XVII collagen ELISA indices significantly decreased after bullous pemphigoid remission. Int J Dermatol. 2011;50(2):238–40.

    PubMed  Google Scholar 

  183. Maalouf SW, Theivakumar S, Owens DM. Epidermal α[alpha]6β[beta]4 integrin stimulates the influx of immunosuppressive cells during skin tumor promotion. J Dermatol Sci. 2012;66(2):108–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Beaulieu JF. Integrin α[alpha]6β[beta]4 in colorectal cancer. World J Gastrointest Pathophysiol. 2010;1(1):3–11.

    PubMed Central  PubMed  Google Scholar 

  185. Gerson KD, Shearstone JR, Maddula VS, Seligmann BE, Mercurio AM. Integrin β[beta]4 regulates SPARC protein to promote invasion. J Biol Chem. 2012;287(13):9835–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Kwon SY, Chae SW, Wilczynski SP, Arain A, Carpenter, Philip M. Laminin 332 expression in breast carcinoma. Appl Immunohistochem Mol Morphol. 2012;20(2):159–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Chiang LY, Poole K, Oliveira BE, Duarte N, Sierra YA, Bruckner-Tuderman L, Koch M, Hu J, Lewin GR. Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons. Nat Neurosci. 2011;14(8):993–1000.

    CAS  PubMed  Google Scholar 

  188. Mokkapati S, Baranowsky A, Mirancea N, Smyth N, Breitkreutz D, Nischt R. Basement membranes in skin are differently affected by lack of nidogen 1 and 2. J Invest Dermatol. 2008;128(9):2259–67.

    CAS  PubMed  Google Scholar 

  189. Kligys KR, Wu Y, Hopkinson SB, Kaur S, Platanias LC, Jones JC. α[alpha]6β[beta]4 integrin: a master regulator of the expression of integrins in human keratinocytes. J Biol Chem. 2012;287:17975–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Kariya Y, Gu J. N-glycosylation of ß4 integrin controls the adhesion and motility of keratinocytes. PLoS One. 2011;6(11):e27084.

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Jourdan MM, Lopez A, Olasz EB, Duncan NE, Demara M, Kittipongdaja W, Fish BL, Mäder M, Schock A, Morrow NV, Semenenko VA, Baker JE, Moulder JE, Lazarova Z. Laminin 332 deposition is diminished in irradiated skin in an animal model of combined radiation and wound skin injury. Radiat Res. 2011;176(5):636–48.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Peter Marinkovich MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hashmi, S., Marinkovich, M.P. (2015). Biology of the Basement Membrane Zone. In: Murrell, D. (eds) Blistering Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45698-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45698-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45697-2

  • Online ISBN: 978-3-662-45698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics