Skip to main content

Oxidationen und Reduktionen

  • Chapter
  • First Online:
Book cover Reaktionsmechanismen
  • 7989 Accesses

Zusammenfassung

Wir alle haben am Beginn des Chemiestudiums gelernt, Oxidationszahlen in anorganischen Verbindungen zu bestimmen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • S. D. Burke, R. L. Danheiser (Hrsg.), „Handbook of Reagents for Organic Synthesis: Oxidizing and Reducing Agents“, Wiley, New York, 1999.

    Google Scholar 

17.1

17.3

  • A. H. Haines, „Methods for the Oxidation of Organic Compounds: Alkanes, Alkenes, Alkynes, Arenes“, AP, New York, 1985.

    Google Scholar 

  • A. H. Haines, „Methods for the Oxidation of Organic Compounds: Alcohols, Alcohol Derivatives, Alkyl Halides, Nitroalkanes, Alkyl Azides, Carbonyl Compounds, Hydroxyarenes, and Aminoarenes“, Academic Press, 1988.

    Google Scholar 

  • M. Hudlicky, „Oxidations in Organic Chemistry“, American Chemical Society, Washington, DC, 1990.

    Google Scholar 

  • H. Bornowski, D. Döpp, R. Jira, U. Langer, H. Offermans, K. Praefcke, G. Prescher, G. Simchen, D. Schumann, „Preparation of Aldehydes by Oxidation“, in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1952–, Aldehydes (J. Falbe, Hrsg.), Bd. E3, 231, Georg Thieme Verlag, Stuttgart, 1983.

    Google Scholar 

  • A. J. Mancuso, D. Swern, „Activated Dimethyl Sulfoxide: Useful Reagents for Synthesis“, Synthesis 1981, 165.

    Google Scholar 

  • T. T. Tidwell, „Oxidation of alcohols by activated dimethyl sulfoxide and related reactions: an update“, Synthesis 1990, 857–870.

    Google Scholar 

  • T. T. Tidwell, „Oxidation of Alcohols to Carbonyl Compounds via Alkoxysulfonium Ylides: The Moffatt, Swern, and Related Oxidations“, Org. React. 1990, 39, 297–572.

    CAS  Google Scholar 

  • F. A. Luzzio, „The Oxidation of Alcohols by Modified Oxochromium(VI)-Amine Reagents“, Org. React. 1998, 53, 1–221.

    CAS  Google Scholar 

  • E. J. de Nooy, A. C. Besemer, H. van Bekkum, „On the Use of Stable Organic Nitroxyl Radicals for the Oxidation of Primary and Secondary Alcohols“, Synthesis, 1996, 1153–1174.

    Google Scholar 

  • R. M. Moriarty, O. Prakash, „Oxidation of Carbonyl Compounds with Organohypervalent Iodine Reagents“, Org. React. 1999, 54, 273–418.

    CAS  Google Scholar 

  • J. B. Arterburn, „Selective Oxidation of Secondary Alcohols“, Tetrahedron 2001, 57, 9765–9788.

    Article  CAS  Google Scholar 

  • D. V. Deubel, G. Frenking, „[3 + 2] Versus [2 + 2] Addition of Metal Oxides Across C=C Bonds. Reconciliation of Experiment and Theory“, Acc. Chem. Res. 2003, 36, 645–651.

    Article  CAS  Google Scholar 

  • R. A. Johnson, K. B. Sharpless, „Catalytic Asymmetric Dihydroxylation-Discovery and Development“, in Catalytic Asymmetric Synthesis (I. Ojima, Hrsg.), Wiley-VCH, New York, 2. Aufl., 2000, 357–389.

    Google Scholar 

  • C. Bolm, J. P. Hildebrand, K. Muniz, „Recent Advances in Asymmetric Dihydroxylation and Aminohydroxylation“, in Catalytic Asymmetric Synthesis, (I. Ojima, Hrsg.), Wiley-VCH, New York, 2. Aufl., 2000, 399–428.

    Google Scholar 

  • D. Nilov, O. Reiser, „The Sharpless Asymmetric Aminohydroxylation - Scope and Limitation“, Adv. Synth. Catal. 2002, 344, 1169–1173.

    Article  CAS  Google Scholar 

  • J. A. Bodkin, M. D. McLeod, „The Sharpless Asymmetric Aminohydroxylation“, J. Chem. Soc. Perkin Trans. I 2002, 2733–2746.

    Google Scholar 

  • R. L. Kuczkowski, „The structure and mechanism of formation of ozonides“, Chem. Soc. Rev. 1992, 21, 79–83.

    Article  CAS  Google Scholar 

  • E. L. Jackson, „Periodic Acid Oxidation“, Org. React. 1944, 2, 341–375.

    Google Scholar 

  • C. H. Hassall, „The Baeyer-Villiger Oxidation of Aldehydes and Ketones“, Org. React. 1957, 9, 73–106.

    Google Scholar 

  • G. R. Krow, „The Baeyer-Villiger Reaction“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 7, 671, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • G. R. Krow, „The Bayer-Villiger Oxidation of Ketones and Aldehydes“, Org. React. 1993, 43, 251–798.

    CAS  Google Scholar 

17.4

  • M. Hudlicky, „Reductions in Organic Chemistry“, The Royal Society of Chemistry, Cambridge, U. K., 1996.

    Google Scholar 

  • A. F. Abdel-Magid (Hrsg.), „Reductions in Organic Synthesis: Recent Advances and Practical Applications“, ACS Symposium Series, The Royal Society of Chemistry, Cambridge, U. K., 1996.

    Google Scholar 

  • A. Hajos, „Reduction with Inorganic Reducing Agents – Metal Hydrides and Complex Hydrides“, in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1952–, Reduction Part II (H. Kropf, Hrsg.), Bd. 4/1d, 1, Georg Thieme Verlag, Stuttgart, 1981.

    Google Scholar 

  • W. G. Brown, „Reductions by Lithium Aluminum Hydride“, Org. React. 1951, 6, 469–509.

    Google Scholar 

  • J. Malek, „Reductions by Metal Alkoxyaluminum Hydrides“, Org. React. 1985, 34, 1–317.

    CAS  Google Scholar 

  • J. Malek, „Reduction by Metal Alkoxyaluminum Hydrides. Part II. Carboxylic Acids and Derivatives, Nitrogen Compounds, and Sulfur Compounds“, Org. React. 1988, 36, 249–590.

    CAS  Google Scholar 

  • J. Seyden-Penne, „Reductions by the Alumino- and Borohydrides in Organic Synthesis“, VCH, New York, 1991.

    Google Scholar 

  • A. J. Downs, C. R. Pulham, „The Hydrides Of Aluminum, Gallium, Indium, And Thallium – A Reevaluation“, Chem. Soc. Rev. 1994, 23, 175.

    Article  CAS  Google Scholar 

  • N. M. Yoon, „Selective Reduction of Organic Compounds with Aluminum and Boron Hydrides“, Pure Appl. Chem. 1996, 68, 843.

    Article  CAS  Google Scholar 

  • J. Seyden-Penne, „Reductions by the Alumino- and Borohydrides in Organic Synthesis“, 2. Aufl., Wiley, New York, 1997.

    Google Scholar 

  • G. W. Gribble, „Sodium Borohydride in Carboxylic Acid Media: A Phenomenal Reduction System“, Chem. Soc. Rev. 1998, 27, 395–404.

    Article  CAS  Google Scholar 

  • L. K. Keefer, G. Lunn, „Nickel-Aluminum Alloy as a Reducing Agent“, Chem. Rev. 1989, 89, 459–502.

    Article  CAS  Google Scholar 

  • T. Imamoto, „Reduction of Saturated Alkyl Halides to Alkanes“, in Comprehensive Or-ganic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 793, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • S. W. McCombie, „Reduction of Saturated Alcohols and Amines to Alkanes“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 811, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • A. G. Sutherland, „One or More CH Bond(s) Formed by Substitution: Reduction of C-Halogen and C-Chalcogen Bonds“, in Comprehensive Organic Functional Group Transformations (A. R. Katritzky, O. Meth-Cohn, C. W. Rees, Hrsg.), Bd. 1, 1, Elsevier Science, Oxford, U. K., 1995.

    Google Scholar 

  • W. H. Hartung, R. Simonoff, „Hydrogenolysis of Benzyl Groups Attached to Oxygen, Nitrogen, or Sulfur“, Org. React. 1953, 7, 263–326.

    Google Scholar 

  • A. Gansäuer, S. Narayan, ”Titanocene-Catalyzed Electron Transfer-Mediated Opening of Epoxides“, Adv. Synth. Catal. 2002, 344, 465–475.

    Article  Google Scholar 

  • C. Blomberg, „The Barbier Reaction and Related One-Step Processes“, Springer-Verlag, Heidelberg, 1994.

    Google Scholar 

  • C. G. Screttas, B. R. Steele, „Organometallic Carboxamidation. A Review“, Org. Prep. Proced. Int. 1990, 22, 269–314.

    Article  CAS  Google Scholar 

  • T. Cohen, M. Bhupathy, „Organoalkali Compounds by Radical Anion Induced Reductive Metalation of Phenyl Thioethers“, Acc. Chem. Res. 1989, 22, 152–161.

    Article  CAS  Google Scholar 

  • M. Yus, „Arene-Catalyzed Lithiation Reactions“, Chem. Soc. Rev. 1996, 25, 155–162.

    Article  CAS  Google Scholar 

  • M. Yus, F. Foubelo, „Reductive Opening of Saturated Oxa-, Aza- and Thia-Cycles by Means of an Arene-Promoted Lithiation: Synthetic Applications“, Rev. Heteroatom Chem. 1997, 17, 73–108.

    CAS  Google Scholar 

  • L. Eberson, „Problems and Prospects of the Concerted Dissociative Electron-Transfer Mechanism“, Acta Chem. Scand. 1999, 53, 751–764.

    Article  CAS  Google Scholar 

  • D. J. Ramon, M. Yus, „New Methodologies Based on Arene-Catalyzed Lithiation Reactions and Their Application to Synthetic Organic Chemistry“, Eur. J. Org. Chem. 2000, 225–237.

    Google Scholar 

  • C. Najera, M. Yus, „Functionalized Organolithium Compounds: New Synthetic Adventures“, Curr. Org. Chem. 2003, 7, 867–926.

    Article  CAS  Google Scholar 

  • Y. H. Lai, „Grignard Reagents from Chemically Activated Magnesium“, Synthesis 1981, 585.

    Google Scholar 

  • C. Walling, „The Nature of Radicals Involved in Grignard Reagent Formation“, Acc. Chem. Res. 1991, 24, 255.

    Article  CAS  Google Scholar 

  • H. M. Walborsky, „Mechanism of Grignard Reagent Formation. The Surface Nature of the Reaction“, Acc. Chem. Res. 1990, 23, 286–293.

    Article  CAS  Google Scholar 

  • H. M. Walborsky, „Wie entsteht eine Grignard-Verbindung?“, Chem. unserer Zeit, 1991, 25, 108–116.

    Article  CAS  Google Scholar 

  • J. F. Garst, „Grignard Reagent Formation and Freely Diffusing Radical Intermediates“, Acc. Chem. Res. 1991, 24, 95–97.

    Article  CAS  Google Scholar 

  • R. D. Rieke, M. S. Sell, „Magnesium Activation“, in Handbook of Grignard Reagents (G. S. Silverman, P. E. Rakita, Hrsg.), Marcel Dekker Inc., New York, 1996, 53–78.

    Google Scholar 

  • C. Humdouchi, H. M. Walborsky, „Mechanism of Grignard Reagent Formation“, in Handbook of Grignard Reagents (G. S. Silverman, P. E. Rakita, Hrsg.), Marcel Dekker Inc., New York, 1996, 145–218.

    Google Scholar 

  • J. F. Garst, F. Unváry, „Mechanisms of Grignard Reagent Formation“, in Grignard Reagents – New Developments, Hrsg.: H. G. Richey, Jr., John Wiley & Sons, Chichester, U. K., 2000, 185–275

    Google Scholar 

  • R. D. Rieke, „The Preparation of Highly Reactive Metals and the Development of Novel Organometallic Reagents“, Aldrichimica Acta 2000, 33, 52–60.

    CAS  Google Scholar 

  • R. D. Rieke, „Preparation of Organometallic Compounds from Highly Reactive Metal Powders“, Science 1989, 246, 1260–1264.

    Google Scholar 

  • A. Gansäuer, H. Bluhm, „Reagent-Controlled Transition-Metal-Catalyzed Radical Reactions“, Chem. Rev. 2000, 100, 2771–2788.

    Article  Google Scholar 

  • J. S. Thayer, „Not for Synthesis Only: The Reactions of Organic Halides with Metal Surfaces“, Adv. Org. Chem. 1995, 38, 59–78.

    CAS  Google Scholar 

  • D. Caine, „Reduction and Related Reactions of a, b-Unsaturated Compounds with Metals in Liquid Ammonia“, Org. React. 1976, 23, 1–258.

    CAS  Google Scholar 

  • J. W. Huffman, „Reduction of CpX to CHXH by Dissolving Metals and Related Methods“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 107, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • A. M. El-Khawaga, H. M. R. Hoffmann, „Formation of C-H Bonds by the Reduction of C=C Double Bonds and of Carbonyl Groups with Metals (‘Dissolving Metal Reduction’)“, in Stereoselective Synthesis (Houben-Weyl) 4. Aufl., 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Hrsg.), 1996, Bd. E21 (Workbench Edition), 7, 3967–3987, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • S. M. McElvain, „The Acyloins“, Org. React. 1948, 4, 256–268.

    CAS  Google Scholar 

  • J. J. Bloomfield, D. C. Owsley, J. M. Neike, „The Acyloin Condensation“, Org. React. 1976, 23, 259–403.

    CAS  Google Scholar 

  • R. Brettle, „Acyloin Coupling Reactions“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 3, 613, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • G. M. Robertson, „Pinacol Coupling Reactions“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 3, 563, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • G. C. Fu, „Pinacol Coupling“, in Modern Carbonyl Chemistry (J. Otera, Hrsg.), Wiley-VCH, Weinheim, 2000, 69–91.

    Google Scholar 

  • O. Hammerich, M. F. Nielsen, „The Competition Between the Dimerization of Radical Anions and Their Reactions with Electrophiles“, Acta Chem. Scand. 1998, 52, 831–857.

    Article  CAS  Google Scholar 

  • D. Lenoir, „The application of low-valent titanium reagents in organic synthesis“, Synthesis 1989, 12, 883–897.

    Article  Google Scholar 

  • J. E. McMurry, „Carbonyl-Coupling Reactions Using Low-Valent Titanium“, Chem. Rev. 1989, 89, 1513–1524.

    Article  CAS  Google Scholar 

  • T. Lectka, „The McMurry Recation“, in Active Metals (A. Fürstner, Hrsg.), 85, VCH, Weinheim, Germany, 1996.

    Google Scholar 

  • A. Fürstner, B. Bogdanovic, „Neue Entwicklungen in der Chemie von niedervalentem Titan“, Angew. Chem. 1996, 108, 2582–2609; „New Developments in the Chemistry of Low-Valent Titanium“, Angew. Chem. Int. Ed. Engl. 1996, 35, 2442–2469.

    Google Scholar 

  • A. G. M. Barrett, „Reduction of Carboxylic Acid Derivatives to Alcohols, Ethers and Amines“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 235, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • E. Mosettig, R. Mozingo, „The Rosenmund Reduction of Acid Chlorides to Aldehydes“, Org. React. 1948, 4, 362–377.

    CAS  Google Scholar 

  • E. Mosettig, „The Synthesis of Aldehydes from Carboxylic Acids“, Org. React. 1954, 8, 218–257.

    Google Scholar 

  • J. S. Cha, „Recent Developments in the Synthesis of Aldehydes by Reduction of Carboxylic Acids and their Derivatives with Metal Hydrides“, Org. Prep. Proced. Int. 1989, 21, 451–477.

    Article  CAS  Google Scholar 

  • A. P. Davis, „Reduction of Carboxylic Acids to Aldehydes by Other Methods“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 283, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • N. Greeves, „Reduction of CpO to CHOH by Metal Hydrides“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 1, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • H. Brunner, „Formation of C-H Bonds by Reduction of Carbonyl Groups (CpO) – Hydrogenation“, in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1952–, Stereoselective Synthesis (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Hrsg.), Bd. E21d, 3945, Georg Thieme Verlag, Stuttgart, 1995.

    Google Scholar 

  • A. P. Davis, M. M. Midland, L. A. Morell, „Formation of C-H Bonds by Reduction of Carbonyl Groups (CpO), Reduction of Carbonyl Groups with Metal Hydrides“, in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1952–, Stereoselective Synthesis (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Hrsg.), Bd. E21d, 3988, Georg Thieme Verlag, Stuttgart, 1995.

    Google Scholar 

  • M. M. Midland, L. A. Morell, K. Krohn, „Formation of C-H Bonds by Reduction of Carbonyl Groups (C=O) – Reduction with C-H Hydride Donors“, in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1952–, Stereoselective Synthesis (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Hrsg.), Bd. E21d, 4082, Georg Thieme Verlag, Stuttgart, 1995.

    Google Scholar 

  • D. Todd, „The Wolff-Kishner Reduction“, Org. React. 1948, 4, 378–422.

    CAS  Google Scholar 

  • R. O. Hutchins, „Reduction of CpX to CH2 by Wolff-Kishner and Other Hydrazone Methods“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 327, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • E. L. Martin, „The Clemmensen Reduction“, Org. React. 1942, 1, 155–209.

    Google Scholar 

  • H. Meerwein, K. Wunderlich, K. F. Zenner; „Ionische Hydrierungen und Dehydrierungen“, Angew. Chem. 1962, 74, 807–811; „Ionic Hydrogenations and Dehydrogenations“, Angew. Chem. Int. Ed. Engl. 1962, 1, 613–617.

    Google Scholar 

  • E. Vedejs, „Clemmensen Reduction of Ketones in Anhydrous Organic Solvents“, Org. React. 1975, 22, 401–422.

    CAS  Google Scholar 

  • G. R. Pettit, E. E. van Tamelen, „Desulfurization with Raney Nickel“, Org. React. 1962, 12, 356–529.

    CAS  Google Scholar 

  • P. N. Rylander, „Hydrogenation Methods“, in Best Synthetic Methods, Academic Press, 1985.

    Google Scholar 

  • H. Brunner, „Hydrogenation with Molecular Hydrogen“, in Stereoselective Synthesis (Houben- Weyl) 4. Aufl., 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Hrsg.), 1996, Bd. E21 (Workbench Edition), 7, 3945–3966, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • U. Kazmaier, J. M. Brown, A. Pfaltz, P. K. Matzinger, H. G. W. Leuenberger, „Formation of C–BH Bonds by Reduction of Olefinic Double Bonds – Hydrogenation“, in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1952–, Stereoselective Synthesis (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Hrsg.), Bd. E21d, 4239, Georg Thieme Verlag, Stuttgart, 1995.

    Google Scholar 

  • V. A. Semikolenov, „Modern approaches to the preparation of, palladium on charcoal‘ catalysts“, Russ. Chem. Rev. 1992, 61, 168–174.

    Article  Google Scholar 

  • M. D. Navalikhina, O. V. Krylov, „Heterogeneous Hydrogenation Catalysts“, Russ. Chem. Rev. 1998, 67, 587–616.

    Article  Google Scholar 

  • A. J. Birch, D. H. Williamson, „Homogeneous Hydrogenation Catalysts in Organic Solvents“, Org. React. 1976, 24, 1–186.

    CAS  Google Scholar 

  • H. Takaya, „Homogeneous Catalytic Hydrogenation of C=C and Alkynes“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 443, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • R. Noyori, H. Takaya, „BINAP: An Efficient Chiral Element for Asymmetric Catalysis“, Acc. Chem. Res. 1990, 23, 345–350.

    Article  CAS  Google Scholar 

  • R. Noyori, „Binaphthyls as Chiral Elements for Asymmetric Synthesis“, in Stereocontrolled Organic Synthesis (B. M. Trost, Hrsg.), Blackwell Scientific Publications, Oxford, U. K., 1994, 1–15.

    Google Scholar 

  • T. Ohkuma, M. Kitamura, R. Noyori, „Asymmetric Hydrogenation“, in Catalytic Asymmetric Synthesis (I. Ojima, Hrsg.), Wiley-VCH, New York, 2. Aufl., 2000, 1–110.

    Google Scholar 

  • V. Ratovelomanana-Vidal, J.-P. Genet, „Synthetic Applications of the Ruthenium-Catalyzed Hydrogenation via Dynamic Kinetic Resolution“, Can. J. Chem. 2000, 78, 846–851.

    Article  CAS  Google Scholar 

  • K. Rossen, „Ru- and Rh-Catalyzed Asymmetric Hydrogenations: Recent Surprises from an Old Reaction“, Angew. Chem. 2001, 113, 4747–4749; Angew. Chem. Int. Ed. Engl. 2001, 40, 4611–4613.

    Google Scholar 

  • J. M. Hook, L. N. Mander, „Recent Developments in the Birch Reduction of Aromatic Compounds: Applications to the Synthesis of Natural Products“, Nat. Prod. Rep. 1986, 3, 35.

    Article  CAS  Google Scholar 

  • P. W. Rabideau, „The Metal-Ammonia Reduction of Aromatic Compounds“, Tetrahedron 1989, 45, 1579–1603.

    Article  CAS  Google Scholar 

  • L. N. Mander, „Partial Reduction of Aromatic Rings by Dissolving Metals and by Other Methods“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 489, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • P. W. Rabideau, Z. Marcinow, „The Birch Reduction of Aromatic Compounds“, Org. React. 1992, 42, 1–334.

    CAS  Google Scholar 

  • A. J. Birch, „The Birch Reduction in Organic Synthesis“, Pure Appl. Chem. 1996, 68, 553–556.

    Article  CAS  Google Scholar 

  • H.-J. Deiseroth, „Alkalimetall-Amalgame“, Chem. unserer Zeit, 1991, 25, 83–86.

    Article  CAS  Google Scholar 

Weiterführende Literatur

  • A. B. Jones, „Oxidation Adjacent to XpX Bonds by Hydroxylation Methods“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 7, 151, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • J. Cason, „Synthesis of Benzoquinones by Oxidation“, Org. React. 1948, 4, 305–361.

    CAS  Google Scholar 

  • P. T. Gallagher, „The Synthesis of Quinones“, Contemp. Org. Synth. 1996, 3, 433–446.

    Article  CAS  Google Scholar 

  • V. D. Filimonov, M. S. Yusubov, Ki-WhanChi, „Oxidative Methods in the Synthesis of Vicinal Di- and Poly-Carbonyl Compounds“, Russ. Chem. Rev. 1998, 67, 803–826.

    Article  CAS  Google Scholar 

  • S. Akai, Y. Kita, „Recent Progress in the Synthesis of p-Quinones and p-Dihydroquinones Through Oxidation of Phenol Derivatives“, Org. Prep. Proced. Int. 1998, 30, 603–629.

    Article  CAS  Google Scholar 

  • J. Tsuji, „Synthetic Applications of the Palladium-Catalysed Oxidation of Olefins to Ketones“, Synthesis 1984, 369.

    Google Scholar 

  • J. Tsuji, „Addition Reactions with Formation of Carbon-Oxygen Bonds – The Wacker Oxidation and Related Reactions“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 7, 469, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • C. Limberg, „On the Trail of CrO2Cl2 in its Reactions with Organic Compounds“, Chemistry – Eur. J. 2000, 6, 2083–2089.

    Google Scholar 

  • A. Fatiadi, „The Classical Permanganate Ion/Still a Novel Oxidant in Organic Chemistry“, Synthesis 1987, 85.

    Google Scholar 

  • H. Kropf, E. Müller, A. Weickmann, „Ozone as an Oxidation Agent“, in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1952–, Oxidation Part I (H. Kropf, Hrsg.), Bd. 4/1a, 3, Georg Thieme Verlag, Stuttgart, 1981.

    Google Scholar 

  • H. Heaney, „Oxidation reactions using magnesium monoperphthalate and urea hydrogen peroxide“, Aldrichimica Acta 1993, 26, 35–45.

    CAS  Google Scholar 

  • W. P. Griffith, S. V. Ley, „TPAP: Tetra-n-Propylammonium Perruthenate, a Mild and Convenient Oxidant for Alcohols“, Aldrichimica Acta 1990, 23, 13–19.

    CAS  Google Scholar 

  • S. V. Ley, J. Norman, W. P. Griffith, S. P. Maraden, „Tetrapropylammonium Perruthenate, Pr4N+RuO4, TPAP: A Catalytic Oxidant for Organic Synthesis“, Synthesis 1994, 639–666.

    Google Scholar 

  • P. Langer, „Tetra-n-propyl Ammonium Perruthenate (TPAP) – An Efficient and Selective Reagent for Oxidation Reactions in Solution and on the Solid Phase“, J. Prakt. Chem. 2000, 342, 728–730.

    Article  CAS  Google Scholar 

  • N. Rabjohn, „Selenium Dioxide Oxidation“, Org. React. 1949, 5, 331–386.

    CAS  Google Scholar 

  • N. Rabjohn, „Selenium Dioxide Oxidation“, Org. React. 1976, 24, 261–415.

    CAS  Google Scholar 

  • W.-D. Woggon, „Formation of C-O Bonds by Allylic Oxidation with Selenium(IV) Oxide“, in Stereoselective Synthesis (Houben-Weyl) 4. Aufl., 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Hrsg.), 1996, Bd. E21 (Workbench Edition), 8, 4947–4956, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • H. Waldmann, „Hypervalent Iodine Reagents“, in Organic Synthesis Highlights II (H. Waldmann, Hrsg.), VCH, Weinheim, New York, 1995, 223–230.

    Google Scholar 

  • A. Varvoglis (Hrsg.), „Hypervalent Iodine in Organic Synthesis“, Academic, San Diego, CA, 1996.

    Google Scholar 

  • C. Djerassi, „The Oppenauer Oxidation“, Org. React. 1951, 6, 207–272.

    Google Scholar 

  • M. Nishizawa, R. Noyori, „Reduction of CpX to CHXH by Chirally Modified Hydride Reagents“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 159, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • R. M. Kellogg, „Reduction of CpX to CHXH by Hydride Delivery from Carbon“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 79, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • A. L. Wilds, „Reduction with Aluminum Alkoxides (The Meerwein-Ponndorf-Verley Reduction)“, Org. React. 1944, 2, 178–223.

    Google Scholar 

  • J. Martens, „Formation of C-H Bonds by Reduction of Imino Groups (CpN) “, in Stereoselective Synthesis (Houben-Weyl) 4. Aufl., 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Hrsg.), 1996, Bd. E21 (Workbench Edition), 7, 4199–4238, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • R. O. Hutchins, „Reduction of CpN to CHNH by Metal Hydrides“, in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Hrsg.), Bd. 8, 25, Pergamon Press, Oxford, U. K., 1991.

    Google Scholar 

  • R. H. Shapiro, „Alkenes from Tosylhydrazones“, Org. React. 1976, 23, 405–507.

    CAS  Google Scholar 

  • A. R. Chamberlin, S. H. Bloom, „Lithioalkenes from Arenesulfonylhydrazones“, Org. React. 1990, 39, 1–83.

    CAS  Google Scholar 

  • U. Kazmaier, „General (Nondirected) Hydrogenations“, in Stereoselective Synthesis (Houben-Weyl) 4. Aufl., 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Hrsg.), 1996, Bd. E21 (Workbench Edition), 7, 4239–4316, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • J. M. Brown, „Directed Hydrogenations“, in Stereoselective Synthesis (Houben-Weyl) 4. Aufl., 1996, (G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Hrsg.), 1996, Bd. E21 (Workbench Edition), 7, 4317–4333, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • H. Adkins, „Catalytic Hydrogenation of Esters to Alcohols“, Org. React. 1954, 8, 1–27.

    Google Scholar 

  • H. Kumobayashi, „Industrial Application of Asymmetric Reactions Catalyzed by BINAPMetal Complexes“, Rec. Trav. Chim. Pays-Bas 1996, 115, 201–210.

    Article  CAS  Google Scholar 

  • K. Inoguchi, S. Sakuraba, K. Achiwa, „Design Concepts for Developing Highly Efficient Chiral Bisphosphine Ligands in Rhodium-Catalyzed Asymmetric Hydrogenations“, Synlett 1992, 169–178.

    Google Scholar 

  • C. Rosini, L. Franzini, A. Raffaelli, P. Salvadori, „Synthesis and Applications of Binaphthylic C2-Symmetry Derivatives as Chiral Auxiliaries in Enantioselective Reactions“, Synthesis 1992, 503–517.

    Google Scholar 

  • P. Kocovsky, S. Vyskocil, M. Smrcina, „Non-Symmetrically Substituted 1,1’-Binaphthyls in Enantioselective Catalysis“, Chem. Rev. 2003, 103, 3213–3245.

    Article  CAS  Google Scholar 

  • W. Tang, X. Zhang, „New Chiral Phosphorus Ligands for Enantioselective Hydrogenation“, Chem. Rev. 2003, 103, 3029–3069.

    Article  CAS  Google Scholar 

  • D. J. Ager, S. A. Laneman, „Reductions of 1,3-Dicarbonyl Systems with Ruthenium-Biarylbisphosphine Catalysts“, Tetrahedron Asymmetry 1997, 8, 3327–3355.

    Article  CAS  Google Scholar 

  • S. Otsuka, K. Tani, „Catalytic Asymmetric Hydrogen Migration of Allylamines“ Synthesis 1991, 665–680.

    Google Scholar 

  • W. S. Knowles, „Asymmetric Hydrogenations (Nobel Lecture)“, Angew. Chem. 2002, 114, 2096–2107; Angew. Chem. Int. Ed. Engl. 2002, 41, 1998–2007.

    Google Scholar 

  • W. S. Knowles, „Asymmetric Hydrogenations (Nobel Lecture 2001)“, Adv. Synth. Catal. 2003, 345, 3–13.

    Article  CAS  Google Scholar 

  • R. Noyori, „Asymmetric Catalysis: Science and Opportunities (Nobel Lecture 2001)“, Adv. Synth. Catal. 2003, 345, 15–32.

    Article  CAS  Google Scholar 

  • E. Block, „Olefin Synthesis via Deoxygenation of Vicinal Diols“, Org. React. (N. Y.) 1984, 30, 457.

    CAS  Google Scholar 

  • M. M. Midland, „Asymmetric Reduction with Organoborane Reagents“, Chem. Rev. 1989, 89, 1553.

    Article  CAS  Google Scholar 

  • H. C. Brown, P. V. Ramachandran, „Asymmetric Reduction with Chiral Organoboranes Based on a-Pinene“, Acc. Chem. Res. 1992, 25, 16–24.

    Article  CAS  Google Scholar 

  • V. Ponec, „Selective De-Oxygenation of Organic Compounds“, Rec. Trav. Chim. Pays-Bas 1996, 115, 451–455.

    Article  CAS  Google Scholar 

  • V. K. Singh, „Practical and Useful Methods for the Enantioselective Reduction of Unsymmetrical Ketones“, Synthesis 1992, 607–617.

    Google Scholar 

  • M. Wills, J. R. Studley, „The Asymmetric Reduction of Ketones“, Chem. Ind. 1994, 552–555. S. Itsuno, „Enantioselective Reduction of Ketones“, Org. React., 1998, 52, 395–576.

    Google Scholar 

  • R. Noyori, T. Ohkuma, „Asymmetrische Katalyse mit hinsichtlich Struktur und Funktion gezielt entworfenen Molekülen: die chemo- und stereoselektive Hydrierung von Ketonen“, Angew. Chem. 2001, 113, 40–75; „Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones“, Angew. Chem. Int. Ed. Engl. 2001, 40, 40–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Brückner .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brückner, R. (2004). Oxidationen und Reduktionen. In: Reaktionsmechanismen. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45684-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45684-2_17

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45683-5

  • Online ISBN: 978-3-662-45684-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics