Skip to main content

BDOPV—A Strong Electron-Deficient Building Block for Polymer Field-Effect Transistors

  • Chapter
  • First Online:
Design, Synthesis, and Structure-Property Relationship Study of Polymer Field-Effect Transistors

Part of the book series: Springer Theses ((Springer Theses))

  • 917 Accesses

Abstract

The scarcity of strong electron-deficient building blocks is probably the main reason that hinders the development of n-type organic semiconductors. To decrease the polymer LUMO level, we choose isoindigo as a basic structure to extend its conjugated backbone and obtain a new strong electron-deficient building block—BDOPV. By application of some strategies successfully used in isoindigo polymers, BDOPV-based polymers exhibit high mobility and good stability in n-type and ambipolar FETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraft A, Grimsdale AC, Holmes AB (1998) Electroluminescent conjugated polymers—seeing polymers in a new light. Angew Chem Int Ed 37:402–428

    Article  Google Scholar 

  2. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  Google Scholar 

  3. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    Article  Google Scholar 

  4. Hide F, Díaz-García MA, Schwartz BJ, Andersson MR, Pei Q, Heeger AJ (1996) Semiconducting polymers: a new class of solid-state laser materials. Science 273:1833–1836

    Article  Google Scholar 

  5. Tessler N, Denton GJ, Friend RH (1996) Lasing from conjugated-polymer microcavities. Nature 382:695–697

    Article  Google Scholar 

  6. Welter S, Brunner K, Hofstraat JW, De Cola L (2003) Electroluminescent device with reversible switching between red and green emission. Nature 421:54–57

    Article  Google Scholar 

  7. Akcelrud L (2003) Electroluminescent polymers. Prog Polym Sci 28:875–962

    Article  Google Scholar 

  8. Chen J, Cao Y (2009) Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res 42:1709–1718

    Article  Google Scholar 

  9. Wang L, Liu Y, Jiang X, Qin D, Cao Y (2007) Enhancement of photovoltaic characteristics using a suitable solvent in hybrid polymer/multiarmed Cds nanorods solar cells. J Phys Chem C 111:9538–9542

    Article  Google Scholar 

  10. Wang C, Dong H, Hu W, Liu Y, Zhu D (2011) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208–2267

    Article  Google Scholar 

  11. van Breemen AJJM, Herwig PT, Chlon CHT, Sweelssen J, Schoo HFM, Benito EM, de Leeuw DM, Tanase C, Wildeman J, Blom PWM (2005) High-performance solution-processable poly(p-phenylene vinylene)s for air-stable organic field-effect transistors. Adv Funct Mater 15:872–876

    Article  Google Scholar 

  12. Meijer EJ, de Leeuw DM, Setayesh S, van Veenendaal E, Huisman BH, Blom PWM, Hummelen JC, Scherf U, Klapwijk TM (2003) Solution-processed ambipolar organic field-effect transistors and inverters. Nat Mater 2:678–682

    Article  Google Scholar 

  13. Blom PWM, de Jong MJM, van Munster MG (1997) Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys Rev B 55:R656–R659

    Article  Google Scholar 

  14. Chua L-L, Zaumseil J, Chang J-F, Ou ECW, Ho PKH, Sirringhaus H, Friend RH (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434:194–199

    Article  Google Scholar 

  15. Nielsen CB, Turbiez M, McCulloch I (2013) Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv Mater 25:1859–1880

    Article  Google Scholar 

  16. Li J, Zhao Y, Tan HS, Guo Y, Di C-A, Yu G, Liu Y, Lin M, Lim SH, Zhou Y, Su H, Ong BS (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754

    Google Scholar 

  17. Chen H, Guo Y, Yu G, Zhao Y, Zhang J, Gao D, Liu H, Liu Y (2012) Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv Mater 24:4618–4622

    Article  Google Scholar 

  18. Lei T, Cao Y, Fan Y, Liu C-J, Yuan S-C, Pei J (2011) High-performance air-stable organic field-effect transistors: Isoindigo-based conjugated polymers. J Am Chem Soc 133:6099–6101

    Article  Google Scholar 

  19. Mei J, Kim DH, Ayzner AL, Toney MF, Bao Z (2011) Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J Am Chem Soc 133:20130–20133

    Article  Google Scholar 

  20. Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR (2011) Rylene and related diimides for organic electronics. Adv Mater 23:268–284

    Article  Google Scholar 

  21. Fan J, Yuen JD, Cui W, Seifter J, Mohebbi AR, Wang M, Zhou H, Heeger A, Wudl F (2012) High-hole-mobility field-effect transistors based on co-benzobisthiadiazole-quaterthiophene. Adv Mater 24:6164–6168

    Article  Google Scholar 

  22. Yuen JD, Fan J, Seifter J, Lim B, Hufschmid R, Heeger AJ, Wudl F (2011) High performance weak donor–acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J Am Chem Soc 133:20799–20807

    Article  Google Scholar 

  23. Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371

    Article  Google Scholar 

  24. Yuen JD, Wudl F (2013) Strong acceptors in donor-acceptor polymers for high performance thin film transistors. Energy Environ Sci 6:392–406

    Article  Google Scholar 

  25. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952

    Article  Google Scholar 

  26. Prins P, Grozema FC, Schins JM, Patil S, Scherf U, Siebbeles LDA (2006) High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes). Phys Rev Lett 96:146601

    Article  Google Scholar 

  27. Lei T, Cao Y, Zhou X, Peng Y, Bian J, Pei J (2012) Systematic investigation of isoindigo-based polymeric field-effect transistors: design strategy and impact of polymer symmetry and backbone curvature. Chem Mater 24:1762–1770

    Article  Google Scholar 

  28. Osaka I, Abe T, Shinamura S, Takimiya K (2011) Impact of isomeric structures on transistor performances in naphthodithiophene semiconducting polymers. J Am Chem Soc 133:6852–6860

    Article  Google Scholar 

  29. Wakioka M, Ikegami M, Ozawa F (2010) Stereocontrolled synthesis and photoisomerization behavior of all-cis and all-trans poly(m-phenylenevinylene)s. Macromolecules 43:6980–6985

    Article  Google Scholar 

  30. Moslin RM, Espino CG, Swager TM (2008) Synthesis of conjugated polymers containing cis-phenylenevinylenes by titanium-mediated reductions. Macromolecules 42:452–454

    Article  Google Scholar 

  31. Chen SH, Su AC, Huang YF, Su CH, Peng GY, Chen SA (2002) Supramolecular aggregation in bulk poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4- phenylenevinylene). Macromolecules 35:4229–4232

    Article  Google Scholar 

  32. Lei T, Dou J-H, Ma Z-J, Yao C-H, Liu C-J, Wang J-Y, Pei J (2012) Ambipolar polymer field-effect transistors based on fluorinated isoindigo: high performance and improved ambient stability. J Am Chem Soc 134:20025–20028

    Article  Google Scholar 

  33. Lei T, Dou J-H, Ma Z-J, Liu C-J, Wang J-Y, Pei J (2013) Chlorination as a useful method to modulate conjugated polymers: balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers. Chem Sci 4:2447–2452

    Article  Google Scholar 

  34. Lei T, Dou J-H, Pei J (2012) Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv Mater 24:6457–6461

    Article  Google Scholar 

  35. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686

    Article  Google Scholar 

  36. Wood JH, Cox L (1946) 2,5-dihydroxy-p-benzenediacetic acid. Org Synth 26:24

    Google Scholar 

  37. Rowland RS, Taylor R (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der waals radii. J Phys Chem 100:7384–7391

    Article  Google Scholar 

  38. Musah RA, Jensen GM, Rosenfeld RJ, McRee DE, Goodin DB, Bunte SW (1997) Variation in strength of an unconventional C–H to O hydrogen bond in an engineered protein cavity. J Am Chem Soc 119:9083–9084

    Article  Google Scholar 

  39. Kim J, Swager TM (2001) Control of conformational and interpolymer effects in conjugated polymers. Nature 411:1030–1034

    Article  Google Scholar 

  40. Chen SH, Su AC, Han SR, Chen SA, Lee YZ (2003) Molecular aggregation and luminescence properties of bulk poly(2,5-di-n-octyloxy-1,4-phenylenevinylene). Macromolecules 37:181–186

    Article  Google Scholar 

  41. Zhou N, Guo X, Ortiz RP, Li S, Zhang S, Chang RPH, Facchetti A, Marks TJ (2012) Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells. Adv Mater 24:2242–2248

    Article  Google Scholar 

  42. Chen Z, Zheng Y, Yan H, Facchetti A (2009) Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate n-channel organic transistors. J Am Chem Soc 131:8–9

    Article  Google Scholar 

  43. Di C-A, Liu Y, Yu G, Zhu D (2009) Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc Chem Res 42:1573–1583

    Article  Google Scholar 

  44. Chen Z, Lee MJ, Shahid Ashraf R, Gu Y, Albert-Seifried S, Meedom Nielsen M, Schroeder B, Anthopoulos TD, Heeney M, McCulloch I, Sirringhaus H (2012) High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv Mater 24:647–652

    Article  Google Scholar 

  45. Chen Z, Lemke H, Albert-Seifried S, Caironi M, Nielsen MM, Heeney M, Zhang W, McCulloch I, Sirringhaus H (2010) High mobility ambipolar charge transport in polyselenophene conjugated polymers. Adv Mater 22:2371–2375

    Article  Google Scholar 

  46. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804

    Article  Google Scholar 

  47. Ryu S, Liu L, Berciaud S, Yu Y-J, Liu H, Kim P, Flynn GW, Brus LE (2010) Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett 10:4944–4951

    Article  Google Scholar 

  48. Okamoto H, Kawasaki N, Kaji Y, Kubozono Y, Fujiwara A, Yamaji M (2008) Air-assisted high-performance field-effect transistor with thin films of picene. J Am Chem Soc 130:10470–10471

    Article  Google Scholar 

  49. Wang Y, Motta SD, Negri F, Friedlein R (2011) Effect of oxygen on the electronic structure of highly crystalline picene films. J Am Chem Soc 133:10054–10057

    Article  Google Scholar 

  50. Di Pietro R, Fazzi D, Kehoe TB, Sirringhaus H (2012) Spectroscopic investigation of oxygen- and water-induced electron trapping and charge transport instabilities in n-type polymer semiconductors. J Am Chem Soc 134:14877–14889

    Article  Google Scholar 

  51. Li H, Kim FS, Ren G, Jenekhe SA (2013) High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics. J Am Chem Soc 135:14920–14923

    Article  Google Scholar 

  52. Takeda Y, Andrew TL, Lobez JM, Mork AJ, Swager TM (2012) An air-stable low-bandgap n-type organic polymer semiconductor exhibiting selective solubility in perfluorinated solvents. Angew Chem Int Ed 51:9042–9046

    Article  Google Scholar 

  53. Lee J-K, Gwinner MC, Berger R, Newby C, Zentel R, Friend RH, Sirringhaus H, Ober CK (2011) High-performance electron-transporting polymers derived from a heteroaryl bis(trifluoroborate). J Am Chem Soc 133:9949–9951

    Article  Google Scholar 

  54. Babel A, Jenekhe SA (2003) High electron mobility in ladder polymer field-effect transistors. J Am Chem Soc 125:13656–13657

    Article  Google Scholar 

  55. Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296–1323

    Article  Google Scholar 

  56. Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208–2267

    Article  Google Scholar 

  57. Tang ML, Bao Z (2011) Halogenated materials as organic semiconductors. Chem Mater 23:446–455

    Article  Google Scholar 

  58. Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3:649–653

    Article  Google Scholar 

  59. Bronstein H, Frost JM, Hadipour A, Kim Y, Nielsen CB, Ashraf RS, Rand BP, Watkins S, McCulloch I (2013) Effect of fluorination on the properties of a donor–acceptor copolymer for use in photovoltaic cells and transistors. Chem Mater 25:277–285

    Article  Google Scholar 

  60. Park JH, Jung EH, Jung JW, Jo WH (2013) A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer. Adv Mater 25:2583–2588

    Article  Google Scholar 

  61. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater 12:1038–1044

    Article  Google Scholar 

  62. Yan Z, Sun B, Li Y (2013) Novel stable (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6(3H,7H)-dione based donor-acceptor polymer semiconductors for n-type organic thin film transistors. Chem Commun 49:3790–3792

    Article  Google Scholar 

  63. Lei T, Dou JH, Cao XY, Wang JY, Pei J (2013) A BDOPV-based donor-acceptor polymer for high-performance n-type and oxygen-doped ambipolar field-effect transistors. Adv Mater 25:6589–6593

    Article  Google Scholar 

  64. Di Pietro R, Fazzi D, Kehoe TB, Sirringhaus H (2012) Spectroscopic investigation of oxygen- and water-induced electron trapping and charge transport instabilities in n-type polymer semiconductors. J Am Chem Soc 134:14877–14889

    Article  Google Scholar 

  65. Lee J, Han AR, Yu H, Shin TJ, Yang C, Oh JH (2013) Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J Am Chem Soc 135:9540–9547

    Article  Google Scholar 

  66. Zhang F, Hu Y, Schuettfort T, Di C-A, Gao X, McNeill CR, Thomsen L, Mannsfeld SCB, Yuan W, Sirringhaus H, Zhu D (2013) Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed n-channel organic thin-film transistors with mobility of up to 3.50 cm2 V−1 s−1. J Am Chem Soc 135:2338–2349

    Article  Google Scholar 

  67. Wen Y, Liu Y, Guo Y, Yu G, Hu W (2011) Experimental techniques for the fabrication and characterization of organic thin films for field-effect transistors. Chem Rev 111:3358–3406

    Article  Google Scholar 

  68. Steyrleuthner R, Schubert M, Howard I, Klaumünzer B, Schilling K, Chen Z, Saalfrank P, Laquai F, Facchetti A, Neher D (2012) Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology. J Am Chem Soc 134:18303–18317

    Article  Google Scholar 

  69. Renak ML, Bartholomew GP, Wang S, Ricatto PJ, Lachicotte RJ, Bazan GC (1999) Fluorinated distyrylbenzene chromophores: effect of fluorine regiochemistry on molecular properties and solid-state organization. J Am Chem Soc 121:7787–7799

    Article  Google Scholar 

  70. Niedzialek D, Lemaur V, Dudenko D, Shu J, Hansen MR, Andreasen JW, Pisula W, Müllen K, Cornil J, Beljonne D (2013) Probing the relation between charge transport and supramolecular organization down to ångström resolution in a benzothiadiazole-cyclopentadithiophene copolymer. Adv Mater 25:1939–1947

    Article  Google Scholar 

  71. Rieger R, Beckmann D, Mavrinskiy A, Kastler M, Müllen K (2010) Backbone curvature in polythiophenes. Chem Mater 22:5314–5318

    Article  Google Scholar 

  72. Lei T, Wang J-Y, Pei J (2014) Roles of flexible chains in organic semiconducting materials. Chem Mater 26:594–603

    Article  Google Scholar 

  73. Mei J, Bao Z (2014) Side chain engineering in solution-processable conjugated polymers. Chem Mater 26:604–615

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, T. (2015). BDOPV—A Strong Electron-Deficient Building Block for Polymer Field-Effect Transistors. In: Design, Synthesis, and Structure-Property Relationship Study of Polymer Field-Effect Transistors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45667-5_4

Download citation

Publish with us

Policies and ethics