Skip to main content

Evidence for a Link of SDPR and Cytoskeleton

  • Conference paper
  • First Online:
Advances in Applied Biotechnology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 332))

Abstract

Serum deprivation response (SDPR) is a plasma membrane binding protein and a substrate of protein kinase C (PKC) phosphorylation, which recruits polymerase I and transcript release factor (PTRF) to caveolae to stabilize and define their morphology. But how they were transported to membrane remain unclear. In order to clarify the link of SDPR and cytoskeleton, we observed the localized relationship between SDPR and cytoskeleton proteins by Immunofluorescence. Here, we discovered that SDPR colocalizes with cortactin (CTTN) in A7r5. Interestingly, SDPR was found to be highly concentrated in podosomes and dorsal ruffles induced by Phorbol 12, 13-dibutyrate (PDBu), and platelet-derived growth factor (PDGF), respectively, which suggest a possible role of SDPR in cell motility and cell invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 20:177–186

    Article  CAS  Google Scholar 

  2. Pilch PF, Liu L (2011) Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab 22:318–324

    Article  CAS  Google Scholar 

  3. Chaudhary N, Gomez GA, Howes MT et al (2014) Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol 12:e1001832

    Article  Google Scholar 

  4. Rothberg KG, Heuser JE, Donzell WC et al (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  CAS  Google Scholar 

  5. Le Lay S, Kurzchalia TV (2005) Getting rid of caveolins: phenotypes of caveolin-deficient animals. Biochim Biophys Acta 1746:322–333

    Article  Google Scholar 

  6. McMahon KA, Zajicek H, Li WP et al (2009) SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J 28:1001–1015

    Article  CAS  Google Scholar 

  7. Hansen CG, Bright NA, Howard G, Nichols BJ (2009) SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11:807–814

    Article  CAS  Google Scholar 

  8. Hill MM, Bastiani M, Luetterforst R et al (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124

    Article  CAS  Google Scholar 

  9. Liu L, Pilch PF (2008) A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 283:4314–4322

    Article  CAS  Google Scholar 

  10. Richter T, Floetenmeyer M, Ferguson C et al (2008) High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions. Traffic 9:893–909

    Article  CAS  Google Scholar 

  11. Mundy DI, Machleidt T, Ying YS et al (2002) Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115:4327–4339

    Article  CAS  Google Scholar 

  12. Inder KL, Zheng YZ, Davis MJ et al (2012) Expression of PTRF in PC-3 cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways. Mol Cell Proteomics 11(2):M111.012245. doi:10.1074/mcp.M111.012245

  13. Weed SA, Parsons JT (2001) Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20:6418–6434

    Article  CAS  Google Scholar 

  14. Buday L, Downward J (2007) Roles of cortactin in tumor pathogenesis. Biochim Biophys Acta 1775:263–273

    CAS  Google Scholar 

  15. Bravo-Cordero JJ, Magalhaes MA, Eddy RJ et al (2013) Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 14:405–415

    Article  CAS  Google Scholar 

  16. Oser M, Yamaguchi H, Mader CC et al (2009) Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J Cell Biol 186:571–587

    Article  CAS  Google Scholar 

  17. Aboulaich N, Vainonen JP, Stralfors P, Vener AV (2004) Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem J 383:237–248

    Article  CAS  Google Scholar 

  18. Calle Y, Burns S, Thrasher AJ, Jones GE (2006) The leukocyte podosome. Eur J Cell Biol 85:151–157

    Article  CAS  Google Scholar 

  19. Rottiers P, Saltel F, Daubon T et al (2009) TGFbeta-induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. J Cell Sci 122:4311–4318

    Article  CAS  Google Scholar 

  20. Kaverina I, Stradal TE, Gimona M (2003) Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains. J Cell Sci 116:4915–4924

    Article  CAS  Google Scholar 

  21. Mellstrom K, Heldin CH, Westermark B (1988) Induction of circular membrane ruffling on human fibroblasts by platelet-derived growth factor. Exp Cell Res 177:347–359

    Article  CAS  Google Scholar 

  22. Suetsugu S, Yamazaki D, Kurisu S, Takenawa T (2003) Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell 5:595–609

    Article  CAS  Google Scholar 

  23. Sero JE, Thodeti CK, Mammoto A et al (2011) Paxillin mediates sensing of physical cues and regulates directional cell motility by controlling lamellipodia positioning. PLoS ONE 6:e28303

    Article  CAS  Google Scholar 

  24. Burgener R, Wolf M, Ganz T, Baggiolini M (1990) Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets. Biochem J 269:729–734

    CAS  Google Scholar 

  25. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596

    Article  CAS  Google Scholar 

  26. Eden S, Rohatgi R, Podtelejnikov AV et al (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418:790–793

    Article  CAS  Google Scholar 

  27. Peleg B, Disanza A, Scita G, Gov N (2011) Propagating cell-membrane waves driven by curved activators of actin polymerization. PLoS ONE 6:e18635

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (NO. 31340001, 31271448) and research start-up fund of Tianjin University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aipo Diao or Yinchuan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, B., Zhu, J., Ma, L., Li, Y., Diao, A., Li, Y. (2015). Evidence for a Link of SDPR and Cytoskeleton. In: Zhang, TC., Nakajima, M. (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45657-6_17

Download citation

Publish with us

Policies and ethics