Skip to main content

Eye Localization Based on Multi-Channel Correlation Filter Bank

  • Conference paper
  • 4970 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 483)

Abstract

Accurate eye localization plays a key role in many face analysis related applications. In this paper, we propose a novel eye localization framework with a group of trained filter arrays called multi-channel correlation filter bank (MCCFB). Each filter array in the bank suits to a different face condition, thus combining these filter array can locate eyes more precisely for variable poses, appearances and illuminations when comparing to single filter/filter array. To demonstrate the performance of our strategy, MCCFB is compared to other eye localization methods, experimental results show superiority of our method in detection ratio, localization accuracy and robustness.

Keywords

  • Eye localization
  • Correlation Filter
  • Filter Bank
  • Multi- channel
  • Regression
  • Biometric Security

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-45646-0_33
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-45646-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhou, Z.H., Geng, X.: Projection functions for eye detection. Pattern Recognition 37(5), 1049–1056 (2004)

    CrossRef  MATH  Google Scholar 

  2. Tan, X., Song, F., Zhou, Z., Chen, S.: Enhanced pictorial structures for preciseeye localization under uncontrolled conditions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1621–1628 (2009)

    Google Scholar 

  3. Cao, X., Wei, Y., Wen, F., Sun, J.: Face Alignment by Explicit Shape Regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2887–2894 (2012)

    Google Scholar 

  4. Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60, 135–164 (2004)

    CrossRef  Google Scholar 

  5. Castrillón-Santana, M., Lorenzo-Navarro, J., Déniz-Suárez, O., Isern-González, J., Falcón-Martel, A.: Multiple face detection at different resolutions for perceptual user interfaces. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 445–452. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  6. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)

    CrossRef  Google Scholar 

  7. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476–3483 (2013)

    Google Scholar 

  8. Bolme, D.S., Draper, B.A., Beveridge, J.R.: Average of synthetic exact filters. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2105–2112 (2009)

    Google Scholar 

  9. Bolme, D.S., Beveridge, J.R., Draper, B.A.: Visual object tracking using adaptive correlation filtersc. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)

    Google Scholar 

  10. Heflin, B., Scheirerc, W., Boult, T.E.: For your eyes only. In: IEEE Workshop on the Applications of Computer Vision, pp. 193–200 (2012)

    Google Scholar 

  11. Boddeti, V.N., Kanade, T., Kumar, B.V.: Correlation Filters for Object Alignment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2291–2298 (2013)

    Google Scholar 

  12. Galoogahi, H.K., Sim, T., Lucey, S.: Multi-channel Correlation Filters. In: IEEE International Conference on Computer Vision, pp. 3072–3079 (2013)

    Google Scholar 

  13. Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust Face Detection Using the Hausdorff Distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  14. FGNET Annotation of BioID Dataset, http://www-prima.inrialpes.fr/FGnet/data/11-BioID/bioid_points.html (accessed May 21, 2014)

  15. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report, University of Massachusetts, Amherst (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, R., Ge, S., Xie, K., Chen, S. (2014). Eye Localization Based on Multi-Channel Correlation Filter Bank. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45646-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45646-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45645-3

  • Online ISBN: 978-3-662-45646-0

  • eBook Packages: Computer ScienceComputer Science (R0)