Signature Selection for Grouped Features with a Case Study on Exon Microarrays

Part of the Studies in Computational Intelligence book series (SCI, volume 584)


When features are grouped, it is desirable to perform feature selection groupwise in addition to selecting individual features. It is typically the case in data obtained by modern high-throughput genomic profiling technologies such as exon microarrays, which measure the amount of gene expression in fine resolution. Exons are disjoint subsequences corresponding to coding regions in genes, and exon microarrays enable us to study the event of different usage of exons, called alternative splicing, which is presumed to contribute to development of diseases. To identify such events, all exons that belong to a relevant gene may have to be selected, perhaps with different weights assigned to them to detect most relevant ones. In this chapter we discuss feature selection methods to handle grouped features. A popular shrinkage method, lasso, and its variants will be our focus, that are based on regularized regression with generalized linear models. Data from exon microarrays will be used for a case study.


Penalized regression Lasso Group lasso Sparsity Convex regularization 



This work has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained Analysis”, project C1.


  1. 1.
    Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., Saeys, Y.: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3), 392–398 (2010)CrossRefGoogle Scholar
  2. 2.
    Bach, F.R.: Bolasso: model consistent Lasso estimation through the bootstrap. In: The 25th International Conference on Machine Learning, pp. 33–40 (2008)Google Scholar
  3. 3.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)Google Scholar
  4. 4.
    Candés, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)CrossRefMATHGoogle Scholar
  5. 5.
    Candés, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. 34(2), 187–220 (1972)MATHGoogle Scholar
  7. 7.
    Davis, C.A., Gerick, F., Hintermair, V., Friedel, C.C., Fundel, K., Küffner, R., Zimmer, R.: Reliable gene signatures for microarray classification: assessment of stability and performance. Bioinformatics 22(19), 2356–2363 (2006)CrossRefGoogle Scholar
  8. 8.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Eschenburg, G., Eggert, A., Schramm, A., Lode, H.N., Hundsdoerfer, P.: Smac mimetic LBW242 sensitizes XIAP-overexpressing neuroblastoma cells for TNF-\(\alpha \)-independent apoptosis. Cancer Res. 72(10), 2645–2656 (2012)CrossRefGoogle Scholar
  10. 10.
    Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)Google Scholar
  11. 11.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning, 2nd ed. 2009. corr. 10th printing 2013 edn. Springer (2009)Google Scholar
  12. 12.
    Jacob, L., Obozinski, G., Vert, J.P.: Group Lasso with overlap and graph Lasso. In: Proceedings of the 26th International Conference on Machine Learning, pp. 433–440. Montreal, Quebec, (2009)Google Scholar
  13. 13.
    Mairal, J., Jenatton, R., Obozinski, G., Bach, F.: Network flow algorithms for structured sparsity. In: Advances in Neural Information Processing Systems, vol. 23, pp. 1558–1566. MIT Press (2010)Google Scholar
  14. 14.
    McCall, M.N., Bolstad, B.M., Irizarry, R.A.: Frozen robust multiarray analysis (fRMA). Biostatistics 11(2), 242–253 (2010)CrossRefGoogle Scholar
  15. 15.
    McCall, M., Murakami, P., Lukk, M., Huber, W., Irizarry, R.: Assessing affymetrix GeneChip microarray quality. BMC Bioinform. 12(1), 137 (2011)CrossRefGoogle Scholar
  16. 16.
    Meier, L., van de Geer, S., Bühlmann, P.: The group Lasso for logistic regression. J. R. Stat. Soc. Ser. B 70, 53–71 (2008)CrossRefMATHGoogle Scholar
  17. 17.
    Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34, 1436–1462 (2006)CrossRefMATHGoogle Scholar
  18. 18.
    Meinshausen, N., Bühlmann, P.: Stability selection. J. R. Stat. Soc. Ser. B 72(4), 417–473 (2010)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Mestdagh, P., Boström, A.K., Impens, F., Fredlund, E., Peer, G.V., Antonellis, P.D., von Stedingk, K., Ghesquière, B., Schulte, S., Dews, M., Thomas-Tikhonenko, A., Schulte, J.H., Zollo, M., Schramm, A., Gevaert, K., Axelson, H., Speleman, F., Vandesompele, J.: The miR-17-92 microRNA cluster regulates multiple components of the TGF-\(\beta \) pathway in neuroblastoma. Mol. Cell 40(5), 762–773 (2010)CrossRefGoogle Scholar
  20. 20.
    Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.C., Müller, M.: pROC: an open-source package for r and s\(+\) to analyze and compare ROC curves. BMC Bioinform. 12(1), 77 (2011)CrossRefGoogle Scholar
  21. 21.
    Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)Google Scholar
  22. 22.
    Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group Lasso. J. Comput. Graph. Stat. 22(2), 231–245 (2013)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)MathSciNetMATHGoogle Scholar
  24. 24.
    Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68, 49–67 (2006)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Yuan, L., Liu, J., Ye, J.: Efficient methods for overlapping group Lasso. In: Advances in Neural Information Processing Systems, vol. 24, pp. 352–360. MIT Press (2011)Google Scholar
  26. 26.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Zhao, P., Yu, B.: On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541–2563 (2006)MathSciNetMATHGoogle Scholar
  28. 28.
    Zhao, P., Rocha, G., Yu, B.: The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat. 37(6A), 3468–3497 (2009)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Technische Universität DortmundDortmundGermany

Personalised recommendations