Advertisement

Selection of Visual Descriptors for the Purpose of Multi-camera Object Re-identification

  • Piotr Dalka
  • Damian Ellwart
  • Grzegorz Szwoch
  • Karol Lisowski
  • Piotr Szczuko
  • Andrzej Czyżewski
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 584)

Abstract

A comparative analysis of various visual descriptors is presented in this chapter. The descriptors utilize many aspects of image data: colour, texture, gradient, and statistical moments. The descriptor list is supplemented with local features calculated in close vicinity of key points found automatically in the image. The goal of the analysis is to find descriptors that are best suited for particular task, i.e. re-identification of objects in a multi-camera environment. The analysis is performed using two datasets containing images of humans and vehicles recorded with different cameras. For the purpose of descriptor evaluation, scatter and clustering measures are supplemented with a new measure that is derived from calculating direct dissimilarities between pairs of images. In order to draw conclusions from multi-dataset analysis, four aggregation measures are introduced. They are meant to find descriptors that provide the best identification effectiveness, based on the relative ranking, and simultaneously are characterized with large stability (invariance to the selection of objects in the dataset). Proposed descriptors are evaluated practically with object re-identification experiments involving four classifiers to detect the same object after its transition between cameras’ fields of view. The achieved results are discussed in detail and illustrated with figures.

Keywords

Video surveillance Image descriptors Multi-camera tracking Object identification 

Notes

Acknowledgments

Research is subsidized by the European Commission within FP7 project “ADDPRIV” (“Automatic Data relevancy Discrimination for a PRIVacy-sensitive video surveillance” , Grant Agreement No. 261653). The authors wish to thank the Gdańsk Science and Technology Park for their help in establishing the test bed for the experiments described in the chapter.

References

  1. 1.
    Allen, R., Mcgeorge, P., Pearson, D., Milne, A.B.: Attention and expertise in multiple target tracking. Appl. Cogn. Psychol. 18(3), 337–347 (2004)CrossRefGoogle Scholar
  2. 2.
    Antani, S., Kasturi, R., Jain, R.: A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video. Pattern Recognit. 35(4), 945–965 (2002)CrossRefMATHGoogle Scholar
  3. 3.
    Bannour, H., Hlaoua, L., El Ayeb, B.: Survey of the adequate descriptor for content-based image retrieval on the web: global versus local features. In: Conference en Recherche d’Information et Applications CORIA, pp. 445–456. LSIS-USTV (2009)Google Scholar
  4. 4.
    Baxes, G.A.: Digital Image Processing: Principles and Applications. Wiley, New York (1994)Google Scholar
  5. 5.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  6. 6.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chapman and Hall, New York (1994)Google Scholar
  8. 8.
    Burger, W., Burge, M.J.: Principles of Digital Image Processing: Core Algorithms. Springer, Berlin (2009)Google Scholar
  9. 9.
    Burger, W., Burge, M.J.: Principles of Digital Image Processing: Fundamental Techniques. Springer, New York (2009)Google Scholar
  10. 10.
    Cavanagh, P., Alvarez, G.A.: Tracking multiple targets with multifocal attention. Trends Cogn. Sci. 9(7), 349–354 (2005)CrossRefGoogle Scholar
  11. 11.
    Chang-yeon, J.: Face detection using LBP features. Final project report—CS 229 machine learning (2008)Google Scholar
  12. 12.
    Cipolla, R., Battiato, S., Farinella, G.: Computer Vision: Detection, Recognition and Reconstruction. Studies in Computational Intelligence. Springer, New York (2010)CrossRefGoogle Scholar
  13. 13.
    Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 28(1), 45–62 (2002)CrossRefGoogle Scholar
  14. 14.
    Czyżewski, A., Lisowski, K.: Employing flowgraphs for forward route reconstruction in video surveillance system. J. Intell. Inf. Syst. 40, 1–15 (2013)CrossRefGoogle Scholar
  15. 15.
    Dalka, P., Szwoch, G., Ciarkowski, A.: Distributed framework for visual event detection in parking lot area. In: Dziech, A., Czyżewski, A. (eds.) Multimedia Communications, Services and Security. Communications in Computer and Information Science, vol. 149, pp. 37–45. Springer, Berlin (2011)Google Scholar
  16. 16.
    Dalka, P., Szwoch, G., Szczuko, P., Czyżewski, A.: Video content analysis in the Urban area telemonitoring system. In: Tsihrintzis, G.A., Jain, L.C. (eds.) Multimedia Services in Intelligent Environments, Smart Innovation, Systems and Technologies, vol. 3, pp. 241–261. Springer, Berlin (2010)CrossRefGoogle Scholar
  17. 17.
    Doyle, A., Lippert, R., Lyon, D.: Eyes Everywhere : The Global Growth of Camera Surveillance. Routledge, London (2012)Google Scholar
  18. 18.
    Ellis, T.J., Makris, D., Black, J.K.: Learning a multi-camera topology. In: Proceedings of Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 165–171 (2003)Google Scholar
  19. 19.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2000)CrossRefGoogle Scholar
  20. 20.
    Geng, X., Wang, L., Li, M., Wu, Q., Smith-Miles, K.: Adaptive fusion of gait and face for human identification in video. In: Proceedings of IEEE Workshop on Applications of Computer Vision WACV, pp. 1–6 (2008)Google Scholar
  21. 21.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc., Upper Saddle River (2006)Google Scholar
  22. 22.
    Halkidi, M., Vazirgiannis, M., Batistakis, Y.: Quality scheme assessment in the clustering process. In: Zighed, D.A., Komorowski, J., Zytkow, J. (eds.) Principles of Data Mining and Knowledge Discovery. Lecture Notes in Computer Science, vol. 1910, pp. 265–276. Springer, Berlin (2000)CrossRefGoogle Scholar
  23. 23.
    Hamdoun, O., Moutarde, F., Stanciulescu, B., Steux, B.: Person re-identification in multi-camera system by signature based on interest point descriptors collected on short video sequences. In: Proceedings of the 2nd ACM/IEEE International Conference on Distributed Smart Cameras ICDSC, pp. 1–6 (2008)Google Scholar
  24. 24.
    Hanbury, A., Kandaswamy, U., Adjeroh, D.A.: Illumination-invariant morphological texture classification. In: Ronse, C., Najman, L., Decencière, E. (eds.) 40 Years On Mathematical Morphology. Computational Imaging and Vision, vol. 30, pp. 377–386. Springer, Netherlands (2005)CrossRefGoogle Scholar
  25. 25.
    Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3(6), 610–621 (1973)CrossRefGoogle Scholar
  26. 26.
    Ilyas, A., Scuturici, M., Miguet, S.: Inter-camera color calibration for object re-identification and tracking. In: Proceedings of International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 188–193 (2010)Google Scholar
  27. 27.
    Jeong, K., Jaynes, C.: Object matching in disjoint cameras using a color transfer approach. Mach. Vis. Appl. 19(5–6), 443–455 (2008)CrossRefMATHGoogle Scholar
  28. 28.
    Kale, K.: Advances in Computer Vision and Information Technology. I.K. International Publishing House Pvt. Limited, New Delhi (2008)Google Scholar
  29. 29.
    Kettnaker, V., Zabih, R.: Bayesian multi-camera surveillance. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, p. 259 (1999)Google Scholar
  30. 30.
    Kim, H., Romberg, J., Wolf, W.: Multi-camera tracking on a graph using Markov chain Monte Carlo. In: Proceedings of the 3rd ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC, pp. 1–8 (2009)Google Scholar
  31. 31.
    Kramer, A.F., Hahn, S.: Splitting the beam: distribution of attention over noncontiguous regions of the visual field. Psychol. Sci. 6(6), 381–386 (1995)CrossRefGoogle Scholar
  32. 32.
    Li, J.H., Liu, M.S., Song, P.: An novel modified extraction method of MPEG-7 visual descriptor for image retrieval. In: Proceedings of International Conference on Machine Learning and Cybernetics (ICMLC), vol. 4, pp. 2037–2041 (2010)Google Scholar
  33. 33.
    Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: Proceedings of IEEE 10th International Conference on Data Mining (ICDM), pp. 911–916 (2010)Google Scholar
  34. 34.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  35. 35.
    Manjunath, B., Ohm, J.R., Vasudevan, V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circuits Syst. Video Technol. 11(6), 703–715 (2001)CrossRefGoogle Scholar
  36. 36.
    Martinez, J.M.: MPEG-7 overview. http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm (2004)
  37. 37.
    Mindru, F., Tuytelaars, T., Gool, L.V.: Moment invariants for recognition under changing viewpoint and illumination. Comput. Vis. Image Underst. 94(1–3), 3–27 (2004). Special Issue: Colour for Image Indexing and RetrievalGoogle Scholar
  38. 38.
    Mittal, A., Davis, L.: Unified multi-camera detection and tracking using region-matching. In: Proceedings of IEEE Workshop on Multi-Object Tracking, pp. 3–10 (2001)Google Scholar
  39. 39.
    Orr, G., Muller, K.: Neural Networks: Tricks of the Trade. Springer, New York (1998)CrossRefGoogle Scholar
  40. 40.
    Piciarelli, C., Foresti, G.: Surveillance-oriented event detection in video streams. IEEE Intell. Syst. 26(3), 32–41 (2011)CrossRefGoogle Scholar
  41. 41.
    Pinheiro, A.: Image descriptors based on the edge orientation. In: Proceedings of the 4th International Workshop on Semantic Media Adaptation and Personalization SMAP, pp. 73–78 (2009)Google Scholar
  42. 42.
    Pitas, I.: Digital Image Processing Algorithms and Applications. Wiley-Interscience Publication, New York (2000)Google Scholar
  43. 43.
    Sharma, S.: Applied multivariate techniques. Wiley, New York (1996)Google Scholar
  44. 44.
    Spyrou, E., Borgne, H.L., Mailis, T., Cooke, E.: Fusing MPEG-7 visual descriptors for image classification. In: Proceedings of International Conference on Artificial Neural Networks (ICANN), pp. 847–852. Springer (2005)Google Scholar
  45. 45.
    Szeliski, R.: Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer, Heidelberg (2010)Google Scholar
  46. 46.
    Szwoch, G., Dalka, P., Czyżewski, A.: A framework for automatic detection of abandoned luggage in airport terminal. In: Tsihrintzis, G., Damiani, E., Virvou, M., Howlett, R., Jain, L.C. (eds.) Intelligent Interactive Multimedia Systems and Services, Smart Innovation, Systems and Technologies, vol. 6, pp. 13–22. Springer, Berlin (2010)CrossRefGoogle Scholar
  47. 47.
    Teixeira, L.F., Corte-Real, L.: Video object matching across multiple independent views using local descriptors and adaptive learning. Pattern Recognit. Lett. 30(2), 157–167 (2009)CrossRefGoogle Scholar
  48. 48.
    Tian, Y.L., Hampapur, A., Brown, L., Feris, R., Lu, M., Senior, A., Shu, C.F., Zhai, Y.: Event detection, query, and retrieval for video surveillance, Chap. Artificial Intelligence for Max-imizing Content Based Image Retrieval, Information Science Reference (2008)Google Scholar
  49. 49.
    Van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  50. 50.
    Wallraven, C., Caputo, B., Graf, A.: Recognition with local features: the kernel recipe. In: Proceedings of the 9th IEEE International Conference on Computer Vision, vol. 1, pp. 257–264 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Piotr Dalka
    • 1
  • Damian Ellwart
    • 1
  • Grzegorz Szwoch
    • 1
  • Karol Lisowski
    • 1
  • Piotr Szczuko
    • 1
  • Andrzej Czyżewski
    • 1
  1. 1.Faculty of Electronics, Telecommunications and InformaticsGdańsk University of TechnologyGdańskPoland

Personalised recommendations