Feature Selection for Data and Pattern Recognition: An Introduction

  • Urszula Stańczyk
  • Lakhmi C. Jain
Part of the Studies in Computational Intelligence book series (SCI, volume 584)


Surrounded by data and information in various forms we need to characterise and describe objects of our universe using some attributes of nominal or numerical type. Selection of features can be performed basing on domain knowledge, executed through dedicated approaches, driven by some particular inherent properties of methodologies and techniques employed, or governed by other factors or rules. This chapter presents a general and brief introduction to topics of feature selection for data and pattern recognition. Its main aim is to provide short descriptions of the chapters included in this volume.


Feature Feature selection Pattern recognition Data mining 


  1. 1.
    Abraham, A., Falcón, R., Bello, R. (eds.): Rough Set Theory: A True Landmark in Data Analysis. Studies in Computational Intelligence, vol. 174. Springer, Berlin (2009)Google Scholar
  2. 2.
    Baxes, G.A.: Digital Image Processing: Principles and Applications. Wiley, New York (1994)Google Scholar
  3. 3.
    Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97, 245–271 (1997)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Botsch, M.: Machine Learning Techniques for Time Series Classification. Cuvillier, San Francisco (2009)Google Scholar
  5. 5.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth & Brooks, Monterey (1984)MATHGoogle Scholar
  7. 7.
    Carbonell, J.G. (ed.): Machine Learning. Paradigms and Methods. MIT Press, Boston (1990)Google Scholar
  8. 8.
    Chao, L.L.: Introduction to Statistics. Brooks Cole Publishing Co., Monterey (1980)MATHGoogle Scholar
  9. 9.
    Cipolla, R., Pentland, A.: Computer Vision for Human-Machine Interaction. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  10. 10.
    Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1, 131–156 (1997)CrossRefGoogle Scholar
  11. 11.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  12. 12.
    Everitt, B.: Cluster Analysis. Heinemann Educational Books, London (1980)MATHGoogle Scholar
  13. 13.
    Flusser, J., Zitova, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley, New York (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Fuernkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
  15. 15.
    Grzymala-Busse, J.W.: Knowledge acquisition under uncertainty—a rough set approach. J. Intell. Robot. Syst. 1, 3–16 (1988)Google Scholar
  16. 16.
    Grzymala-Busse, J.W.: Data with missing attribute values: generalization of indiscernibility relation and rule induction. Trans. Rough Sets 1, 78–95 (2004)Google Scholar
  17. 17.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)MATHGoogle Scholar
  18. 18.
    Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction. Foundations and Applications. Springer, Berlin (2006)CrossRefMATHGoogle Scholar
  19. 19.
    Hamburg, M.: Statistical Analysis for Decision Making. Harcourt Brace Jovanovich Inc., New York (1983)Google Scholar
  20. 20.
    Hofstadter, D.: Metamagical Themas: Questing for the Essence of Mind and Pattern. Basic Books Inc., New York (1985)Google Scholar
  21. 21.
    Holland, J.H., Holyoak, K.J., Nisbett, R.E.: Induction: Processes of Inference, Learning, and Discovery. MIT Press, Boston (1986)Google Scholar
  22. 22.
    Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods, 2nd edn. Wiley, New York (1999)MATHGoogle Scholar
  23. 23.
    Jensen, R., Shen, Q.: Computational Intelligence and Feature Selection. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  24. 24.
    Kloesgen, W., Zytkow, J. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press, New York (2002)MATHGoogle Scholar
  25. 25.
    Kohavi, R., John, G.: Wrappers for feature selection. Artif. Intell. 97, 273–324 (1997)CrossRefMATHGoogle Scholar
  26. 26.
    Krawiec, K., Stefanowski, J.: Machine Learning and Neural Nets. Poznan University of Technology Press, Poznan (2003)Google Scholar
  27. 27.
    Kuncheva, L.I.: Combining Pattern Classifiers. Methods and Algorithms. Wiley, Hoboken (2004)CrossRefMATHGoogle Scholar
  28. 28.
    Liu, H., Motoda, H.: Computational Methods of Feature Selection. Chapman and Hall/ CRC, Boca Raton (2007)MATHGoogle Scholar
  29. 29.
    Longman Dictionary of Contemporary English, 6th revised edn. Pearson Longman, London (2014)Google Scholar
  30. 30.
    Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, Berlin (2010)MATHGoogle Scholar
  31. 31.
    Meyers, R.A. (ed.): Encyclopedia of Complexity and Systems Science. Springer, Berlin (2009)MATHGoogle Scholar
  32. 32.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Boston (1991)CrossRefMATHGoogle Scholar
  33. 33.
    Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 1: Methodology and Applications. Physica-Verlag, Heidelberg (1998)MATHGoogle Scholar
  34. 34.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  35. 35.
    Roiger, R.J., Geatz, M.W.: Data Mining. A Tutorial-Based Primer. Addison-Wesley, Boston (2003)Google Scholar
  36. 36.
    Slowinski, R.: Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers, Boston (1992)Google Scholar
  37. 37.
    Stefanowski, J.: Algorithms of Decision Rule Induction in Data Mining. Poznan University of Technology Press, Poznan (2001)Google Scholar
  38. 38.
    The Merriam-Webster Dictionary.
  39. 39.
    Wang, J. (ed.): Data Mining: Opportunities and Challenges. Idea Group Publishing, Hershey (2003)Google Scholar
  40. 40.
    Weiss, S.M., Indurkhya, N.: Predictive Data Mining. A Practical Guide. Morgan Kaufmann Publication, San Francisco (1998)MATHGoogle Scholar
  41. 41.
    Witten, I., Frank, E.: Data Mining. Practical Machine Learning Tools and Techniques. Elsevier, Amsterdam (2005)MATHGoogle Scholar
  42. 42.
    Zanakis, H., Doukidis, G., Zopounidised, Z. (eds.): Decision Making: Recent Developments and Worldwide Applications. Kluwer Academic Publishers, Boston (2000)Google Scholar
  43. 43.
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)CrossRefMathSciNetMATHGoogle Scholar
  44. 44.
    Ziarko, W.: Probabilistic approach to rough sets. Int. J. Approx. Reason. 49, 272–284 (2008)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland
  2. 2.Faculty of Education, Science, Technology and MathematicsUniversity of CanberraCanberraAustralia

Personalised recommendations