Advertisement

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys

  • Itai Dinur
  • Orr Dunkelman
  • Nathan Keller
  • Adi Shamir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8873)

Abstract

The iterated Even-Mansour (EM) scheme is a generalization of the original 1-round construction proposed in 1991, and can use one key, two keys, or completely independent keys. In this paper, we methodically analyze the security of all the possible iterated Even-Mansour schemes with two n-bit keys and up to four rounds, and show that none of them provides more than n-bit security. Our attacks are based on a new cryptanalytic technique called multibridge which splits the cipher to different parts in a novel way, such that they can be analyzed independently, exploiting its self-similarity properties. After the analysis of the parts, the key suggestions are efficiently joined using a meet-in-the-middle procedure.

As a demonstration of the multibridge technique, we devise a new attack on 4 steps of the LED-128 block cipher, reducing the time complexity of the best known attack on this scheme from 296 to 264. Furthermore, we show that our technique can be used as a generic key-recovery tool, when combined with some statistical distinguishers (like those recently constructed in reflection cryptanalysis of GOST and PRINCE).

Keywords

Cryptanalysis meet-in-the-middle attacks multibridge attack iterated Even-Mansour LED-128 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aerts, W., Biham, E., De Moitie, D., De Mulder, E., Dunkelman, O., Indesteege, S., Keller, N., Preneel, B., Vandenbosch, G.A.E., Verbauwhede, I.: A Practical Attack on KeeLoq. J. Cryptology 25(1), 136–157 (2012)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the Indifferentiability of Key-Alternating Ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–119. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.P., Tischhauser, E.: Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Permutations - (Extended Abstract). In: Pointcheval, Johansson (eds.) [27], pp. 45–62Google Scholar
  5. 5.
    Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications - Extended Abstract. In: Wang, Sako (eds.) [30], pp. 208–225Google Scholar
  6. 6.
    Daemen, J.: Limitations of the Even-Mansour Construction. In: Imai, et al. (eds.) [15], pp. 495–498Google Scholar
  7. 7.
    Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient Dissection of Composite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 719–740. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Cryptanalysis of iterated even-mansour schemes with two keys. Cryptology ePrint Archive, Report 2013/674 (2013), http://eprint.iacr.org/
  9. 9.
    Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key Recovery Attacks on 3-round Even-Mansour, 8-step LED-128, and Full AES2. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 337–356. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Dunkelman, O., Keller, N., Shamir, A.: Minimalism in Cryptography: The Even-Mansour Scheme Revisited. In: Pointcheval, Johansson (eds.) [27], pp. 336–354Google Scholar
  11. 11.
    Even, S., Mansour, Y.: A construction of a cioher from a single pseudorandom permutation. In: Imai, et al. (eds.) [15], pp. 210–224Google Scholar
  12. 12.
    Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: Applications to Discrete Logs, Even-Mansour and Prince. Cryptology ePrint Archive, Report 2013/761 (2013), http://eprint.iacr.org/
  13. 13.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Hellman, M.E.: A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions on Information Theory 26(4), 401–406 (1980)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Matsumoto, T., Imai, H., Rivest, R.L. (eds.): ASIACRYPT 1991. LNCS, vol. 739. Springer, Heidelberg (1993)MATHGoogle Scholar
  16. 16.
    Isobe, T., Shibutani, K.: Security Analysis of the Lightweight Block Ciphers XTEA, LED and Piccolo. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 71–86. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Kara, O.: Reflection Cryptanalysis of Some Ciphers. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 294–307. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Lampe, R., Patarin, J., Seurin, Y.: An Asymptotically Tight Security Analysis of the Iterated Even-Mansour Cipher. In: Wang, Sako (eds.) [30], pp. 278–295Google Scholar
  19. 19.
    Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Mandal, A., Patarin, J., Seurin, Y.: On the Public Indifferentiability and Correlation Intractability of the 6-Round Feistel Construction. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 285–302. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Mendel, F., Rijmen, V., Toz, D., Varici, K.: Differential Analysis of the LED Block Cipher. In: Wang, Sako (eds.) [30], pp. 190–207Google Scholar
  22. 22.
    Merkle, R.C., Hellman, M.E.: On the Security of Multiple Encryption. Commun. ACM 24(7), 465–467 (1981)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Nikolić, I., Wang, L., Wu, S.: Cryptanalysis of Round-Reduced LED. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 112–130. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Patarin, J.: Improved security bounds for pseudorandom permutations. In: Graveman, R., Janson, P.A., Neumann, C., Gong, L. (eds.) ACM Conference on Computer and Communications Security, pp. 142–150. ACM (1997)Google Scholar
  25. 25.
    Patarin, J.: Luby-Rackoff: 7 Rounds Are Enough for formula_image Security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Patarin, J.: Security of Random Feistel Schemes with 5 or More Rounds. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237. Springer, Heidelberg (2012)MATHGoogle Scholar
  28. 28.
    Soleimany, H., Blondeau, C., Yu, X., Wu, W., Nyberg, K., Zhang, H., Zhang, L., Wang, Y.: Reflection Cryptanalysis of PRINCE-Like Ciphers. Journal of Cryptology, 1–27 (2013)Google Scholar
  29. 29.
    van Oorschot, P.C., Wiener, M.: A Known-Plaintext Attack on Two-Key Triple Encryption. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 318–325. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  30. 30.
    Wang, X., Sako, K. (eds.): ASIACRYPT 2012. LNCS, vol. 7658, pp. 2012–2018. Springer, Heidelberg (2012)MATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Itai Dinur
    • 1
  • Orr Dunkelman
    • 2
    • 3
  • Nathan Keller
    • 3
    • 4
  • Adi Shamir
    • 4
  1. 1.Département d’InformatiqueÉcole Normale SupérieureParisFrance
  2. 2.Computer Science DepartmentUniversity of HaifaIsrael
  3. 3.Department of MathematicsBar-Ilan UniversityIsrael
  4. 4.Computer Science departmentThe Weizmann InstituteRehovotIsrael

Personalised recommendations