Advertisement

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys

  • Itai Dinur
  • Orr Dunkelman
  • Nathan Keller
  • Adi Shamir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8873)

Abstract

The iterated Even-Mansour (EM) scheme is a generalization of the original 1-round construction proposed in 1991, and can use one key, two keys, or completely independent keys. In this paper, we methodically analyze the security of all the possible iterated Even-Mansour schemes with two n-bit keys and up to four rounds, and show that none of them provides more than n-bit security. Our attacks are based on a new cryptanalytic technique called multibridge which splits the cipher to different parts in a novel way, such that they can be analyzed independently, exploiting its self-similarity properties. After the analysis of the parts, the key suggestions are efficiently joined using a meet-in-the-middle procedure.

As a demonstration of the multibridge technique, we devise a new attack on 4 steps of the LED-128 block cipher, reducing the time complexity of the best known attack on this scheme from 296 to 264. Furthermore, we show that our technique can be used as a generic key-recovery tool, when combined with some statistical distinguishers (like those recently constructed in reflection cryptanalysis of GOST and PRINCE).

Keywords

Cryptanalysis meet-in-the-middle attacks multibridge attack iterated Even-Mansour LED-128 

References

  1. 1.
    Aerts, W., Biham, E., De Moitie, D., De Mulder, E., Dunkelman, O., Indesteege, S., Keller, N., Preneel, B., Vandenbosch, G.A.E., Verbauwhede, I.: A Practical Attack on KeeLoq. J. Cryptology 25(1), 136–157 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the Indifferentiability of Key-Alternating Ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–119. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.P., Tischhauser, E.: Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Permutations - (Extended Abstract). In: Pointcheval, Johansson (eds.) [27], pp. 45–62Google Scholar
  5. 5.
    Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications - Extended Abstract. In: Wang, Sako (eds.) [30], pp. 208–225Google Scholar
  6. 6.
    Daemen, J.: Limitations of the Even-Mansour Construction. In: Imai, et al. (eds.) [15], pp. 495–498Google Scholar
  7. 7.
    Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient Dissection of Composite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 719–740. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Cryptanalysis of iterated even-mansour schemes with two keys. Cryptology ePrint Archive, Report 2013/674 (2013), http://eprint.iacr.org/
  9. 9.
    Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key Recovery Attacks on 3-round Even-Mansour, 8-step LED-128, and Full AES2. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 337–356. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Dunkelman, O., Keller, N., Shamir, A.: Minimalism in Cryptography: The Even-Mansour Scheme Revisited. In: Pointcheval, Johansson (eds.) [27], pp. 336–354Google Scholar
  11. 11.
    Even, S., Mansour, Y.: A construction of a cioher from a single pseudorandom permutation. In: Imai, et al. (eds.) [15], pp. 210–224Google Scholar
  12. 12.
    Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: Applications to Discrete Logs, Even-Mansour and Prince. Cryptology ePrint Archive, Report 2013/761 (2013), http://eprint.iacr.org/
  13. 13.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Hellman, M.E.: A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions on Information Theory 26(4), 401–406 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Matsumoto, T., Imai, H., Rivest, R.L. (eds.): ASIACRYPT 1991. LNCS, vol. 739. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  16. 16.
    Isobe, T., Shibutani, K.: Security Analysis of the Lightweight Block Ciphers XTEA, LED and Piccolo. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 71–86. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Kara, O.: Reflection Cryptanalysis of Some Ciphers. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 294–307. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Lampe, R., Patarin, J., Seurin, Y.: An Asymptotically Tight Security Analysis of the Iterated Even-Mansour Cipher. In: Wang, Sako (eds.) [30], pp. 278–295Google Scholar
  19. 19.
    Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Mandal, A., Patarin, J., Seurin, Y.: On the Public Indifferentiability and Correlation Intractability of the 6-Round Feistel Construction. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 285–302. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Mendel, F., Rijmen, V., Toz, D., Varici, K.: Differential Analysis of the LED Block Cipher. In: Wang, Sako (eds.) [30], pp. 190–207Google Scholar
  22. 22.
    Merkle, R.C., Hellman, M.E.: On the Security of Multiple Encryption. Commun. ACM 24(7), 465–467 (1981)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Nikolić, I., Wang, L., Wu, S.: Cryptanalysis of Round-Reduced LED. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 112–130. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Patarin, J.: Improved security bounds for pseudorandom permutations. In: Graveman, R., Janson, P.A., Neumann, C., Gong, L. (eds.) ACM Conference on Computer and Communications Security, pp. 142–150. ACM (1997)Google Scholar
  25. 25.
    Patarin, J.: Luby-Rackoff: 7 Rounds Are Enough for formula_image Security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Patarin, J.: Security of Random Feistel Schemes with 5 or More Rounds. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  28. 28.
    Soleimany, H., Blondeau, C., Yu, X., Wu, W., Nyberg, K., Zhang, H., Zhang, L., Wang, Y.: Reflection Cryptanalysis of PRINCE-Like Ciphers. Journal of Cryptology, 1–27 (2013)Google Scholar
  29. 29.
    van Oorschot, P.C., Wiener, M.: A Known-Plaintext Attack on Two-Key Triple Encryption. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 318–325. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  30. 30.
    Wang, X., Sako, K. (eds.): ASIACRYPT 2012. LNCS, vol. 7658, pp. 2012–2018. Springer, Heidelberg (2012)zbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Itai Dinur
    • 1
  • Orr Dunkelman
    • 2
    • 3
  • Nathan Keller
    • 3
    • 4
  • Adi Shamir
    • 4
  1. 1.Département d’InformatiqueÉcole Normale SupérieureParisFrance
  2. 2.Computer Science DepartmentUniversity of HaifaIsrael
  3. 3.Department of MathematicsBar-Ilan UniversityIsrael
  4. 4.Computer Science departmentThe Weizmann InstituteRehovotIsrael

Personalised recommendations