Abstract
As one-more problems are widely used in both proving and analyzing the security of various cryptographic schemes, it is of fundamental importance to investigate the hardness of the one-more problems themselves. Bresson et al. (CT-RSA ’08) first showed that it is difficult to rely the hardness of some one-more problems on the hardness of their “regular” ones. Pass (STOC ’11) then gave a stronger black-box separation showing that the hardness of some one-more problems cannot be based on standard assumptions using black-box reductions. However, since previous works only deal with one-more problems whose solution can be efficiently checked, the relation between the hardness of the one-more (static) CDH problem over non-bilinear groups and other hard problems is still unclear. In this work, we give the first impossibility results showing that black-box reductions cannot be used to base the hardness of the one-more (static) CDH problem (over groups where the DDH problem is still hard) on any standard hardness assumption. Furthermore, we also extend the impossibility results to a class of generalized “one-more” problems, which not only subsume/strengthen many existing separations for traditional one-more problems, but also give new separations for many other interesting “one-more” problems.
Keywords
- Blind Signature
- Test Algorithm
- Security Parameter
- Discrete Logarithm Problem
- Impossibility Result
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Jiang Zhang, Zhenfeng Zhang and Yanfei Guo are sponsored by the National Basic Research Program of China under Grant No. 2013CB338003, and the National Natural Science Foundation of China (NSFC) under Grant No. 61170278, 91118006. Yu Chen is sponsored by NSFC under Grant No. 61303257, and the Strategic Priority Research Program of CAS under Grant No. XDA06010701. Zongyang Zhang is an International Research Fellow of JSPS and his work is in part supported by NSFC under grant No. 61303201.
Chapter PDF
References
Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. Journal of Computer and System Sciences 39(1), 21–50 (1989)
Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)
Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. Journal of Cryptology 22(1), 1–61 (2009)
Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The power of RSA inversion oracles and the security of Chaum’s RSA-based blind signature scheme. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 309–328. Springer, Heidelberg (2002)
Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3), 185–215 (2003)
Bellare, M., Neven, G.: Transitive signatures: new schemes and proofs. IEEE Transactions on Information Theory 51(6), 2133–2151 (2005)
Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: Proofs of security against impersonation under active and concurrent attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)
Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)
Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-more” computational problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 71–87. Springer, Heidelberg (2008)
Brown, D.R.L.: Irreducibility to the one-more evaluation problems: More may be less. Cryptology ePrint Archive, Report 2007/435 (2007)
Brown, D.R.L., Gallant, R.P.: The static Diffie-Hellman problem. Cryptology ePrint Archive, Report 2004/306 (2004)
Canard, S., Gouget, A., Traoré, J.: Improvement of efficiency in (unconditional) anonymous transferable e-cash. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 202–214. Springer, Heidelberg (2008)
Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–115. Springer, Heidelberg (1999)
Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)
Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)
Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO, pp. 199–203 (1982)
Chen, Y., Huang, Q., Zhang, Z.: Sakai-ohgishi-kasahara identity-based non-interactive key exchange scheme, revisited. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 274–289. Springer, Heidelberg (2014)
De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010)
Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture and a new non-black-box simulation strategy. In: FOCS, pp. 251–260 (2009)
Dodis, Y., Haitner, I., Tentes, A.: On the instantiability of hash-and-sign RSA signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 112–132. Springer, Heidelberg (2012)
Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. Journal of the ACM 51(6), 851–898 (2004)
Fiore, D., Schröder, D.: Uniqueness is a different story: Impossibility of verifiable random functions from trapdoor permutations. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 636–653. Springer, Heidelberg (2012)
Fischlin, M.: Black-box reductions and separations in cryptography. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 413–422. Springer, Heidelberg (2012)
Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: The case of Schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013)
Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010)
Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg (2008)
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC, pp. 99–108 (2011)
Granger, R.: On the static Diffie-Hellman problem on elliptic curves over extension fields. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 283–302. Springer, Heidelberg (2010)
Herranz, J., Laguillaumie, F.: Blind ring signatures secure under the chosen-target-CDH assumption. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 117–130. Springer, Heidelberg (2006)
Joux, A., Lercier, R., Naccache, D., Thomé, E.: Oracle-assisted static Diffie-Hellman is easier than discrete logarithms. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 351–367. Springer, Heidelberg (2009)
Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)
Katz, J., Schröder, D., Yerukhimovich, A.: Impossibility of blind signatures from one-way permutations. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 615–629. Springer, Heidelberg (2011)
Koblitz, N., Menezes, A.: Another look at non-standard discrete log and Diffie-Hellman problems. Cryptology ePrint Archive, Report 2007/442 (2007)
Okamoto, T., Pointcheval, D.: The Gap-problems: A new class of problems for the security of cryptographic schemes. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)
Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)
Pass, R.: Limits of provable security from standard assumptions. In: STOC, pp. 109–118 (2011)
Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570. Springer, Heidelberg (2008)
Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)
Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)
Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)
Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 International Association for Cryptologic Research
About this paper
Cite this paper
Zhang, J., Zhang, Z., Chen, Y., Guo, Y., Zhang, Z. (2014). Black-Box Separations for One-More (Static) CDH and Its Generalization. In: Sarkar, P., Iwata, T. (eds) Advances in Cryptology – ASIACRYPT 2014. ASIACRYPT 2014. Lecture Notes in Computer Science, vol 8874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45608-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-662-45608-8_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45607-1
Online ISBN: 978-3-662-45608-8
eBook Packages: Computer ScienceComputer Science (R0)